Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Hypoxic induction of interleukin-8 gene expression in human endothelial cells.
M Karakurum, … , R Nowygrod, D Stern
M Karakurum, … , R Nowygrod, D Stern
Published April 1, 1994
Citation Information: J Clin Invest. ;93(4):1564-1570. https://doi.org/10.1172/JCI117135.
View: Text | PDF
Research Article

Hypoxic induction of interleukin-8 gene expression in human endothelial cells.

  • Text
  • PDF
Abstract

Because leukocyte-mediated tissue damage is an important component of the pathologic picture in ischemia/reperfusion, we have sought mechanisms by which PMNs are directed into hypoxic tissue. Incubation of human endothelial cells (ECs) in hypoxia, PO2 approximately 14-18 Torr, led to time-dependent release of IL-8 antigen into the conditioned medium; this was accompanied by increased chemotactic activity for PMNs, blocked by antibody to IL-8. Production of IL-8 by hypoxic ECs occurred concomitantly with both increased levels of IL-8 mRNA, based on polymerase chain reaction analysis, and increased IL-8 transcription, based on nuclear run-on assays. Northern analysis of mRNA from hypoxic ECs also demonstrated increased levels of mRNA for macrophage chemotactic protein-1, another member of the chemokine superfamily of proinflammatory cytokines. IL-8 gene induction was associated with the presence of increased binding activity in nuclear extracts from hypoxic ECs for the NF-kB site. Studies with human umbilical vein segments exposed to hypoxia also demonstrated increased elaboration of IL-8 antigen compared with normoxic controls. In mice exposed to hypoxia (PO2 approximately 30-40 Torr), there was increased pulmonary leukostasis, as evidenced by increased myeloperoxidase activity in tissue homogenates. In parallel, increased levels of transcripts for IP-10, a murine homologue in the chemokine family related to IL-8, were observed in hypoxic lung tissue. Taken together, these data suggest that hypoxia constitutes a stimulus for leukocyte chemotaxis and tissue leukostasis. Images

Authors

M Karakurum, R Shreeniwas, J Chen, D Pinsky, S D Yan, M Anderson, K Sunouchi, J Major, T Hamilton, K Kuwabara, A Rot, R Nowygrod, D Stern

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts