Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117131

Anchorage-independent colony growth of pulmonary fibroblasts derived from fibrotic human lung tissue.

D J Torry, C D Richards, T J Podor, and J Gauldie

Department of Pathology, McMaster University, Hamilton, Ontario, Canada.

Find articles by Torry, D. in: PubMed | Google Scholar

Department of Pathology, McMaster University, Hamilton, Ontario, Canada.

Find articles by Richards, C. in: PubMed | Google Scholar

Department of Pathology, McMaster University, Hamilton, Ontario, Canada.

Find articles by Podor, T. in: PubMed | Google Scholar

Department of Pathology, McMaster University, Hamilton, Ontario, Canada.

Find articles by Gauldie, J. in: PubMed | Google Scholar

Published April 1, 1994 - More info

Published in Volume 93, Issue 4 on April 1, 1994
J Clin Invest. 1994;93(4):1525–1532. https://doi.org/10.1172/JCI117131.
© 1994 The American Society for Clinical Investigation
Published April 1, 1994 - Version history
View PDF
Abstract

Fibroblast heterogeneity is known to exist in chronically inflamed tissue such as pulmonary fibrosis (IPF) and scleroderma. We have previously shown differences in proliferation rates in primary lines and cloned lines of fibroblasts derived from IPF tissue compared with normal lung. In this study, we report that cell lines derived from fibrotic tissue demonstrate anchorage-independent growth in soft agarose culture whereas normal lung fibroblast lines do not. We also show that fibroblast lines derived from neonatal lung tissue form colonies at about the same frequency as the fibrotic cells. Colonies from both fibrotic and neonatal lines were shown to be positive for vimentin, laminin, fibronectin, fibronectin receptor, beta-actin, and tropomyosin by immunohistochemistry but were negative for desmin, keratin, Factor VIII, alpha-smooth muscle cell actin, and tenascin. Treatment with cytokines TGF-beta and PDGF or with corticosteroid modified the colony-forming capacity of fibrotic and neonatal cell lines, however, none of these treatments induced normal lung cell lines to form colonies. The presence of cells in adult fibrotic tissue with growth characteristics similar to those exhibited by neonatal cells is further evidence of fibroblast heterogeneity and suggests newly differentiated fibroblasts may be prevalent in fibrotic tissue and contribute directly to the matrix disorder seen in this disease.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1525
page 1525
icon of scanned page 1526
page 1526
icon of scanned page 1527
page 1527
icon of scanned page 1528
page 1528
icon of scanned page 1529
page 1529
icon of scanned page 1530
page 1530
icon of scanned page 1531
page 1531
icon of scanned page 1532
page 1532
Version history
  • Version 1 (April 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts