Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Extrathyroidal release of thyroid hormones from thyroglobulin by J774 mouse macrophages.
K Brix, V Herzog
K Brix, V Herzog
Published April 1, 1994
Citation Information: J Clin Invest. 1994;93(4):1388-1396. https://doi.org/10.1172/JCI117115.
View: Text | PDF
Research Article

Extrathyroidal release of thyroid hormones from thyroglobulin by J774 mouse macrophages.

  • Text
  • PDF
Abstract

Thyroglobulin appears in the circulation of vertebrates at species-specific concentrations. We have observed that the clearance of thyroglobulin from the circulation occurs in the liver by macrophages. Here we show that the thyroid hormones T3 and T4 were released by incubation of mouse macrophages (J774) with thyroglobulin. Thyroid hormone release was a fast process, with an initial rate of approximately 20 pmol T4/mg per min and approximately 0.6 pmol T3/mg per min, indicating that macrophages preferentially release T4. The bulk of released thyroid hormones appeared after 5 min of incubation of macrophages with thyroglobulin, whereas degradation of the protein was detectable only after several hours. During internalization of thyroglobulin, endocytic vesicles and endosomes were reached at 5 min and lysosomes at 60 min. T4 release started extracellularly by secreted proteases and continued along the endocytic pathway of thyroglobulin, whereas T3 release occurred mainly intracellularly when thyroglobulin had reached the lysosomes. This shows that the release of both hormones occurred at distinct cellular sites. Our in vitro observations suggest that macrophages in situ represent an extrathyroidal source for thyroid hormones from circulating thyroglobulin.

Authors

K Brix, V Herzog

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 109 5
PDF 46 10
Figure 0 3
Scanned page 351 5
Citation downloads 73 0
Totals 579 23
Total Views 602
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts