Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Citations to this article

Cellular distribution of insulin-degrading enzyme gene expression. Comparison with insulin and insulin-like growth factor receptors.
C A Bondy, … , L Ding, R A Roth
C A Bondy, … , L Ding, R A Roth
Published March 1, 1994
Citation Information: J Clin Invest. 1994;93(3):966-973. https://doi.org/10.1172/JCI117103.
View: Text | PDF
Research Article

Cellular distribution of insulin-degrading enzyme gene expression. Comparison with insulin and insulin-like growth factor receptors.

  • Text
  • PDF
Abstract

Insulin-degrading enzyme (IDE) hydrolyzes both insulin and IGFs and has been proposed to play a role in signal termination after binding of these peptides to their receptors. In situ hybridization was used to investigate the cellular distribution of IDE mRNA and to compare it with insulin receptor (IR) and IGF-I receptor (IGFR) gene expression in serial thin sections from a variety of tissues in embryonic and adult rats. IDE mRNA is highly abundant in kidney and liver, tissues known to play a role in insulin degradation. IDE and IR mRNAs are highly coexpressed in brown fat and liver. The highest level IDE gene expression, on a per cell basis, is found in germinal epithelium. IDE and IGFR mRNAs are colocalized in oocytes, while IDE is colocalized with the IGF-II receptor in spermatocytes, suggesting that IDE may be involved with degradation of IGF-II in the testis. In summary, IDE expression demonstrates significant anatomical correlation with insulin/IGF receptors. These data are compatible with a role for IDE in degrading insulin and IGFs after they bind to and are internalized with their respective receptors and may also suggest a novel role for IDE in germ cells.

Authors

C A Bondy, J Zhou, E Chin, R R Reinhardt, L Ding, R A Roth

×

Loading citation information...
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts