Intimal hyperplasia is induced by therapeutic vascular interventions and often results in clinically important narrowing of the vascular lumen. Examination of the role of TGF-beta 1 in a rat carotid artery injury model confirmed the presence of a previously reported increase in TGF-beta 1 mRNA in the media of injured arteries. Administration of neutralizing anti- TGF-beta 1 antibodies significantly (P < 0.05) reduced the size of the intimal lesions that developed after carotid balloon injury. A control antibody had no effect. The intimal/medial area ratio was also reduced in the anti-TGF-beta 1 group relative to controls (P < 0.01). Immunohistochemical staining showed that two TGF-beta 1-induced extracellular matrix components, EDA + fibronectin and versican, were greatly increased in the untreated neointimal lesions, but were almost completely absent from the lesions of the anti-TGF-beta 1-treated animals. We conclude that TGF-beta 1 is causally involved in the development of intimal hyperplasia, and that anti-TGF-beta 1 agents may be useful in achieving at least partial control of this condition.
Y G Wolf, L M Rasmussen, E Ruoslahti
Usage data is cumulative from September 2023 through September 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 211 | 0 |
65 | 23 | |
Figure | 0 | 8 |
Scanned page | 214 | 15 |
Citation downloads | 34 | 0 |
Totals | 524 | 46 |
Total Views | 570 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.