We examined cell-attached patches on principal cells of primary cultured, rabbit cortical collecting tubules. Under basal conditions, apical 9-pS Cl(-)-selective channels were observed in 9% of patches (11/126), and number of channels times open probability (NP0) was 0.56 +/- 0.21. The channel had a linear current-voltage relationship, reversal potential (Erev) near resting membrane potential, a P0 (0.30-0.70) that was independent of voltage, and complicated kinetics (i.e., bursting) at hyperpolarized potentials. NP0 and channel frequency were increased after 30 min of basolateral exposure to 0.5 microM PGE2 (18/56), 10 microM forskolin (23/36), or 0.5 mM dibutyryl cyclic adenosine monophosphate (cAMP) (25/41). Increases in NP0 appeared to be mediated primarily through an increase in the number of observed channels per patch (N), not changes in P0. After these cAMP-increasing maneuvers, N was inconsistent with a uniform distribution of channels in the apical membrane (P < 0.001), but rather the channels appeared to be clustered in pairs. Apical 0.5 microM PGE2 (12/91), apical or basolateral 0.5 microM PGF2 alpha (8/110), or 0.25 microM thapsigargin (releaser of intracellular Ca2+ stores) (7/73) did not increase NP0 or channel frequency. Conclusions: (a) 9-pS Cl- channels provide a conductive pathway for apical membrane Cl- transport across principal cells. (b) Channel activation by basolateral PGE2 is mediated via a cAMP-, but not a Ca(2+)-dependent mechanism. (c) Apical channels are clustered in pairs. (d) With its low baseline frequency and Erev near resting membrane potential, this channel would not contribute significantly to transcellular Cl- flux under basal conditions. (e) However, cAMP-producing agonists (i.e., PGE2, arginine vasopressin) would increase apical Cl- transport with the direction determined by the apical membrane potential.
B N Ling, K E Kokko, D C Eaton
Usage data is cumulative from June 2024 through June 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 100 | 10 |
48 | 13 | |
Scanned page | 428 | 0 |
Citation downloads | 68 | 0 |
Totals | 644 | 23 |
Total Views | 667 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.