Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Induction of nitric oxide synthase by cyclic AMP in rat vascular smooth muscle cells.
T Imai, … , K Kanno, F Marumo
T Imai, … , K Kanno, F Marumo
Published February 1, 1994
Citation Information: J Clin Invest. 1994;93(2):543-549. https://doi.org/10.1172/JCI117005.
View: Text | PDF
Research Article

Induction of nitric oxide synthase by cyclic AMP in rat vascular smooth muscle cells.

  • Text
  • PDF
Abstract

By measurements of NO2-/NO3- (NOx) production and Northern blot analysis, we studied the effects of a membrane-permeable cAMP derivative, 8-bromo-cAMP, on the expression of inducible nitric oxide synthase (iNOS) gene and the synthesis of NOx in cultured rat vascular smooth muscle cells (VSMCs). 8-bromo-cAMP stimulated NOx production and increased steady-state levels of iNOS mRNA in rat VSMC in a time- and dose-dependent manner. NG-monomethyl-L-arginine, a NOS inhibitor, completely blocked the 8-bromo-cAMP-induced NOx production, whose effect was partially, but significantly reversed by an excess L-arginine, but not by D-arginine. Compounds that increase intracellular cAMP levels (cholera toxin, forskolin, and 3-isobutyl-1-methylxanthine), all stimulated NOx production. Dexamethasone inhibited the stimulated NOx production, as well as the induction of iNOS mRNA by cAMP. Both actinomycin D and cycloheximide completely blocked the stimulated NOx production by cAMP. Actinomycin D abolished the cAMP-induced iNOS mRNA, whereas cycloheximide remarkably increased iNOS mRNA levels in the presence and absence of 8-bromo-cAMP (superinduction). Actinomycin D, but not dexamethasone, completely abolished the cycloheximide-induced iNOS mRNA. The half-life of cAMP-induced iNOS mRNA was approximately 2 h, whereas no decay in the cycloheximide-induced iNOS mRNA was observed during 12 h. These results demonstrate that iNOS gene is upregulated by cAMP and the superinduction of iNOS mRNA is attributable to increased mRNA stability in rat VSMC.

Authors

T Imai, Y Hirata, K Kanno, F Marumo

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 240 4
PDF 121 12
Scanned page 345 0
Citation downloads 85 0
Totals 791 16
Total Views 807
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts