Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116865

Hypertensive sodium-proton exchanger phenotype persists in immortalized lymphoblasts from essential hypertensive patients. A cell culture model for human hypertension.

D Rosskopf, E Frömter, and W Siffert

Max-Planck-Institut für Biophysik, Frankfurt/Main, Germany.

Find articles by Rosskopf, D. in: PubMed | Google Scholar

Max-Planck-Institut für Biophysik, Frankfurt/Main, Germany.

Find articles by Frömter, E. in: PubMed | Google Scholar

Max-Planck-Institut für Biophysik, Frankfurt/Main, Germany.

Find articles by Siffert, W. in: PubMed | Google Scholar

Published November 1, 1993 - More info

Published in Volume 92, Issue 5 on November 1, 1993
J Clin Invest. 1993;92(5):2553–2559. https://doi.org/10.1172/JCI116865.
© 1993 The American Society for Clinical Investigation
Published November 1, 1993 - Version history
View PDF
Abstract

An enhancement of sodium-proton exchange activity is a frequently observed ion transport abnormality in essential hypertension. The cellular basis for this has not yet been elucidated. Due to the lack of a specific cell culture system it has been impossible to distinguish between intrinsic cellular abnormalities and influences exerted by the hypertensive neurohumoral milieu. Using Epstein-Barr virus we have immortalized lymphocytes from controls and from patients with essential hypertension that exhibited enhanced sodium-proton exchanger activity. Sodium-proton exchanger activity was determined in cells loaded with the fluorescent cytosolic pH indicator 2'7'-biscarboxyethyl-5,6-carboxyfluorescein acetoxymethylester (BCECF) after pretreatment with 250 nM of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate for 10 min. Cell lines from hypertensive patients displayed higher Vmax values of sodium-proton exchange than those from normotensive controls (129.6 +/- 30.0 vs. 77.1 +/- 13.2 mmol H+/min.; P < 0.001). Hill coefficients for H+ were distinctly lower in hypertension compared to normotension (1.12 +/- 0.12 vs. 1.50 +/- 0.14; P < 0.0001). The enhanced antiporter activity in cell lines from hypertensive patients was not accompanied by a corresponding increase in steady-state NHE-1 mRNA transcript levels, which argues against overexpression of antiporter protein in hypertension. The cells from hypertensive patients with high sodium-proton exchange activity proliferated distinctly faster than those from normotensive controls. These human cell lines represent a novel model to study the mutual interaction between sodium-proton exchange and cell proliferation, and may provide insights into the alterations in ion transport observed in a group of patients with essential hypertension.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2553
page 2553
icon of scanned page 2554
page 2554
icon of scanned page 2555
page 2555
icon of scanned page 2556
page 2556
icon of scanned page 2557
page 2557
icon of scanned page 2558
page 2558
icon of scanned page 2559
page 2559
Version history
  • Version 1 (November 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts