Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Citations to this article

Thromboxane-insensitive dog platelets have impaired activation of phospholipase C due to receptor-linked G protein dysfunction.
G J Johnson, … , L A Leis, P C Dunlop
G J Johnson, … , L A Leis, P C Dunlop
Published November 1, 1993
Citation Information: J Clin Invest. 1993;92(5):2469-2479. https://doi.org/10.1172/JCI116855.
View: Text | PDF
Research Article

Thromboxane-insensitive dog platelets have impaired activation of phospholipase C due to receptor-linked G protein dysfunction.

  • Text
  • PDF
Abstract

Human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors are linked to phosphoinositide-specific phospholipase C (PI-PLC) via a G protein tentatively identified as a member of the Gq class. In contrast, platelet thrombin receptors appear to activate PI-PLC via other unidentified G proteins. Platelets from most dogs are TXA2 insensitive (TXA2-); i.e., they do not aggregate irreversibly or secrete although they bind TXA2, but they respond normally to thrombin. In contrast, a minority of dogs have TXA2-sensitive (TXA2+) platelets that are responsive to TXA2. To determine the mechanism responsible for TXA2- platelets, we evaluated receptor activation of PI-PLC. Equilibrium binding of TXA2/PGH2 receptor agonists, [125I]BOP and [3H]U46619, and antagonist, [3H]SQ29,548, revealed comparable high-affinity binding to TXA2-, TXA2+, and human platelets. U46619-induced PI-PLC activation was impaired in TXA2- platelets as evidenced by reduced (a) phosphorylation of the 47-kD substrate of protein kinase C, (b) phosphatidic acid (PA) formation, (c) rise in cytosolic calcium concentration, and (d) inositol 1,4,5 trisphosphate (IP3) formation, while thrombin-induced PI-PLC activation was not impaired. GTPase activity stimulated by U46619, but not by thrombin, was markedly reduced in TXA2- platelets. Antisera to Gq class alpha subunits abolished U46619-induced GTPase activity in TXA2-, TXA2+, and human platelets. Direct G protein stimulation by GTP gamma S yielded significantly less PA and IP3 in TXA2- platelets. Immunotransfer blotting revealed comparable quantities of Gq class alpha-subunits in all three platelet types. Thus, TXA2- dog platelets have impaired PI-PLC activation in response to TXA2/PGH2 receptor agonists secondary to G protein dysfunction, presumably involving a member of the Gq class.

Authors

G J Johnson, L A Leis, P C Dunlop

×

Loading citation information...
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts