Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116845

Gene transfer into respiratory epithelial cells by targeting the polymeric immunoglobulin receptor.

T Ferkol, C S Kaetzel, and P B Davis

Department of Pediatrics, Rainbow Babies and Childrens Hospital, Cleveland, Ohio 44106.

Find articles by Ferkol, T. in: JCI | PubMed | Google Scholar

Department of Pediatrics, Rainbow Babies and Childrens Hospital, Cleveland, Ohio 44106.

Find articles by Kaetzel, C. in: JCI | PubMed | Google Scholar

Department of Pediatrics, Rainbow Babies and Childrens Hospital, Cleveland, Ohio 44106.

Find articles by Davis, P. in: JCI | PubMed | Google Scholar

Published November 1, 1993 - More info

Published in Volume 92, Issue 5 on November 1, 1993
J Clin Invest. 1993;92(5):2394–2400. https://doi.org/10.1172/JCI116845.
© 1993 The American Society for Clinical Investigation
Published November 1, 1993 - Version history
View PDF
Abstract

A system for targeting foreign DNA to epithelial cells in vitro has been developed by exploiting receptor-mediated endocytosis. The polymeric immunoglobulin receptor transports dimeric immunoglobulin A and immunoglobulin M through epithelial cells, including those of the respiratory tract, by binding the immunoglobulins at the basolateral surface and transporting them across the cell. Fab fragments of antibodies directed against the extracellular portion of the receptor, secretory component, are similarly transported. Anti-human secretory component Fab fragments were covalently linked to a polycation, and complexed to various expression plasmids. When bound to an expression plasmid containing the Escherichia coli lacZ gene ligated to the Rous sarcoma virus promoter, the complexes transfected HT29.74 human colon carcinoma cells induced to express polymeric immunoglobulin receptor, but not those lacking the receptor. Primary cultures of human tracheal epithelial cells grown on collagen gels, which induce the expression of polymeric immunoglobulin receptor, were also transfected with the complexes. From 5 to 66% of the respiratory epithelial cells had beta-galactosidase activity after treatment, comparable to the percentage of cultured human tracheal epithelial cells that express polymeric immunoglobulin receptor (8-35%). The addition of excess human secretory component (Fab ligand) to the culture medium at the time of transfection blocked the delivery of DNA. The expression plasmid, either alone, complexed to the polycation, or complexed to a carrier based on an irrelevant Fab fragment, was not effective in transfecting either cell type. This DNA carrier system introduces DNA specifically into epithelial cells that contain pIgR in vitro.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2394
page 2394
icon of scanned page 2395
page 2395
icon of scanned page 2396
page 2396
icon of scanned page 2397
page 2397
icon of scanned page 2398
page 2398
icon of scanned page 2399
page 2399
icon of scanned page 2400
page 2400
Version history
  • Version 1 (November 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts