Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart.
T Yokoyama, … , P Hazarika, D L Mann
T Yokoyama, … , P Hazarika, D L Mann
Published November 1, 1993
Citation Information: J Clin Invest. 1993;92(5):2303-2312. https://doi.org/10.1172/JCI116834.
View: Text | PDF
Research Article

Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart.

  • Text
  • PDF
Abstract

To define the mechanism(s) responsible for the negative inotropic effects of tumor necrosis factor-alpha (TNF alpha) in the adult heart, we examined the functional effects of TNF alpha in the intact left ventricle and the isolated adult cardiac myocyte. Studies in both the ventricle and the isolated adult cardiac myocyte showed that TNF alpha exerted a concentration- and time-dependent negative inotropic effect that was fully reversible upon removal of this cytokine. Further, treatment with a neutralizing anti-TNF alpha antibody prevented the negative inotropic effects of TNF alpha in isolated myocytes. A cellular basis for the above findings was provided by studies which showed that treatment with TNF alpha resulted in decreased levels of peak intracellular calcium during the systolic contraction sequence; moreover, these findings did not appear to be secondary to alterations in the electrophysiological properties of the cardiac myocyte. Further studies showed that increased levels of nitric oxide, de novo protein synthesis, and metabolites of the arachidonic acid pathway were unlikely to be responsible for the TNF alpha-induced abnormalities in contractile function. Thus, these studies constitute the initial demonstration that the negative inotropic effects of TNF alpha are the direct result of alterations in intracellular calcium homeostasis in the adult cardiac myocyte.

Authors

T Yokoyama, L Vaca, R D Rossen, W Durante, P Hazarika, D L Mann

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 480 43
PDF 77 31
Figure 0 1
Scanned page 492 14
Citation downloads 102 0
Totals 1,151 89
Total Views 1,240
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts