Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Charge selectivity of the glomerular filtration barrier in healthy and nephrotic humans.
A Guasch, … , W M Deen, B D Myers
A Guasch, … , W M Deen, B D Myers
Published November 1, 1993
Citation Information: J Clin Invest. 1993;92(5):2274-2282. https://doi.org/10.1172/JCI116831.
View: Text | PDF
Research Article

Charge selectivity of the glomerular filtration barrier in healthy and nephrotic humans.

  • Text
  • PDF
Abstract

We used dextran sulfate (DS) to evaluate barrier charge selectivity in 11 nonproteinuric subjects and in 11 patients with the nephrotic syndrome due to either membranous nephropathy or minimal change nephropathy. The 3H-DS preparation spanned a molecular radius interval of 10-24 A and exhibited size-dependent protein binding in vitro. Urine and ultrafiltrates of plasma were separated by size into narrow fractions using gel permeation chromatography. The sieving coefficient (theta) for ultrafilterable DS of 15A radius averaged 0.68 +/- 0.03 in nonproteinuric vs. 0.95 +/- 0.05 in nephrotic subjects (P < 0.001). Uncharged dextrans of broad size distribution were used to evaluate barrier size-selectivity in separate groups of nonproteinuric subjects (n = 19) and nephrotic patients with either minimal change (n = 20) or membranous nephropathy (n = 27). The value of theta for an uncharged dextran of similarly small radius (approximately 18 A) was significantly larger than that observed for DS in nonproteinuric subjects, but was similar in nephrotic individuals. Further, impaired barrier size-selectivity, as assessed by the sieving profile for uncharged dextrans (18-60 A radius), failed to account fully for the observed level of albuminuria in almost half of the patients with either minimal change (9/20) or membranous nephropathy (12/27). Together these findings suggest that the human glomerular capillary wall normally provides an electrostatic barrier to filtration of negatively charged macromolecules such as albumin, and that impairment of this electrostatic barrier contributes to the magnitude of albuminuria in the nephrotic syndrome.

Authors

A Guasch, W M Deen, B D Myers

×

Usage data is cumulative from March 2022 through March 2023.

Usage JCI PMC
Text version 295 0
PDF 64 21
Figure 0 1
Scanned page 178 24
Citation downloads 14 0
Totals 551 46
Total Views 597
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts