Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116829

Bumetanide decreases canine cerebrospinal fluid production. In vivo evidence for NaCl cotransport in the central nervous system.

S Javaheri and K R Wagner

Pulmonary Section, Veterans Affairs Medical Center, Cincinnati, Ohio 45220.

Find articles by Javaheri, S. in: PubMed | Google Scholar

Pulmonary Section, Veterans Affairs Medical Center, Cincinnati, Ohio 45220.

Find articles by Wagner, K. in: PubMed | Google Scholar

Published November 1, 1993 - More info

Published in Volume 92, Issue 5 on November 1, 1993
J Clin Invest. 1993;92(5):2257–2261. https://doi.org/10.1172/JCI116829.
© 1993 The American Society for Clinical Investigation
Published November 1, 1993 - Version history
View PDF
Abstract

Na/K/2Cl cotransport carrier plays an important role in fluid absorption and secretion in many epithelial tissues. The role of the carrier, however, in mammalian choroidal cerebrospinal fluid (CSF) production has been controversial. We used ventriculo-cisternal perfusion (VCP) labeled with blue dextran with or without bumetanide and measured choroidal CSF production in anesthetized, and paralyzed, mechanically ventilated dogs. During 3 h of VCP, mean intracerebroventricular and arterial pressures, PaCO2, pH, [HCO3-], and serum osmolality remained normal in both groups (n = 9 in each group). Beginning 90 min after the start of VCP, choroidal CSF production was measured every 15 min. In group I (control group), values for CSF production (means +/- SD) were 49 +/- 20, 49 +/- 21, 51 +/- 21, 51 +/- 23, 48 +/- 20, 56 +/- 24, and 48 +/- 20 microliters/min, at 90, 105, 120, 135, 150, 165, and 180 min, respectively. These values did not differ significantly from each other. In group II (bumetanide group), after baseline control CSF production had been determined at 90 and 105 min, bumetanide (10(-4) mol/liter) was added to VCP. Mean values for CSF production were 54 +/- 15 and 52 +/- 17 microliters/min before, and 39 +/- 25, 34 +/- 19, 28 +/- 10, 30 +/- 17, and 30 +/- 18 microliters/min after addition of bumetanide at 90, 105, 120, 135, 150, 165, and 180 min, respectively. Comparing the two groups, baseline values for CSF production measured at 90 and 105 min did not differ significantly. After addition of bumetanide (group II), however, decrements in CSF production varied from 30 +/- 27% at 120 min to 47 +/- 14% at 150 min, which were significantly different from changes in group I. The results of this study indicate that NaCl cotransport carrier is involved in secretion of CSF in dogs, and inhibition of the transporter results in approximately 50% reduction in CSF production.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2257
page 2257
icon of scanned page 2258
page 2258
icon of scanned page 2259
page 2259
icon of scanned page 2260
page 2260
icon of scanned page 2261
page 2261
Version history
  • Version 1 (November 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts