Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Antigen mimicry in autoimmune disease sharing of amino acid residues critical for pathogenic T cell activation.
A M Luo, … , D Hunt, K S Tung
A M Luo, … , D Hunt, K S Tung
Published November 1, 1993
Citation Information: J Clin Invest. 1993;92(5):2117-2123. https://doi.org/10.1172/JCI116812.
View: Text | PDF
Research Article

Antigen mimicry in autoimmune disease sharing of amino acid residues critical for pathogenic T cell activation.

  • Text
  • PDF
Abstract

A nonamer peptide from murine nicotinic acetylcholine receptor delta chain (ACR delta), which shared four amino acid residues with a nonamer peptide of murine ovarian zona pellucida glycoprotein ZP3, induced murine autoimmune oophoritis and IgG autoantibody to the zona pellucida. Crossreaction between the ACR delta and ZP3 peptides was established by the response of a ZP3 peptide-specific, oophoritogenic T cell clone to both peptides in association with IA (alpha k beta b). By substituting the ZP3 peptides with a single alanine, four amino acids within the ZP3 peptide were found to be important for ovarian autoimmune disease, autoantibody response, and stimulation of the ZP3-specific T cell clone. Substitution with conservative amino acids of three residues also ablated activity, whereas the fourth, a phenylalanine, was replaceable by tyrosine without loss of activity. Of the four critical amino acids, three were shared between the ZP3 peptide and the ACR delta peptide. Moreover, polyalanine peptides with the four critical ZP3 amino acids or the four amino acids common to the ZP3 and ACR delta peptides induced immune response to ZP3 and elicited severe ovarian autoimmune disease. Thus, organ-specific autoimmune disease can occur through immune response against unrelated self (or foreign) peptides that share with a self-peptide sufficient common amino acid residues critical for activation of pathogenic, autoreactive T cells.

Authors

A M Luo, K M Garza, D Hunt, K S Tung

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts