Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Mechanism of enhanced insulin sensitivity in athletes. Increased blood flow, muscle glucose transport protein (GLUT-4) concentration, and glycogen synthase activity.
P Ebeling, R Bourey, L Koranyi, J A Tuominen, L C Groop, J Henriksson, M Mueckler, A Sovijärvi, V A Koivisto
P Ebeling, R Bourey, L Koranyi, J A Tuominen, L C Groop, J Henriksson, M Mueckler, A Sovijärvi, V A Koivisto
View: Text | PDF
Research Article

Mechanism of enhanced insulin sensitivity in athletes. Increased blood flow, muscle glucose transport protein (GLUT-4) concentration, and glycogen synthase activity.

  • Text
  • PDF
Abstract

We examined the mechanisms of enhanced insulin sensitivity in 9 male healthy athletes (age, 25 +/- 1 yr; maximal aerobic power [VO2max], 57.6 +/- 1.0 ml/kg per min) as compared with 10 sedentary control subjects (age, 28 +/- 2 yr; VO2max, 44.1 +/- 2.3 ml/kg per min). In the athletes, whole body glucose disposal (240-min insulin clamp) was 32% (P < 0.01) and nonoxidative glucose disposal (indirect calorimetry) was 62% higher (P < 0.01) than in the controls. Muscle glycogen content increased by 39% in the athletes (P < 0.05) but did not change in the controls during insulin clamp. VO2max correlated with whole body (r = 0.60, P < 0.01) and nonoxidative glucose disposal (r = 0.64, P < 0.001). In the athletes forearm blood flow was 64% greater (P < 0.05) than in the controls, whereas their muscle capillary density was normal. Basal blood flow was related to VO2max (r = 0.63, P < 0.05) and glucose disposal during insulin infusion (r = 0.65, P < 0.05). The forearm glucose uptake in the athletes was increased by 3.3-fold (P < 0.01) in the basal state and by 73% (P < 0.05) during insulin infusion. Muscle glucose transport protein (GLUT-4) concentration was 93% greater in the athletes than controls (P < 0.01) and it was related to VO2max (r = 0.61, P < 0.01) and to whole body glucose disposal (r = 0.60, P < 0.01). Muscle glycogen synthase activity was 33% greater in the athletes than in the controls (P < 0.05), and the basal glycogen synthase fractional activity was closely related to blood flow (r = 0.88, P < 0.001). In conclusion: (a) athletes are characterized by enhanced muscle blood flow and glucose uptake. (b) The cellular mechanisms of glucose uptake are increased GLUT-4 protein content, glycogen synthase activity, and glucose storage as glycogen. (c) A close correlation between glycogen synthase fractional activity and blood flow suggests that they are causally related in promoting glucose disposal.

Authors

P Ebeling, R Bourey, L Koranyi, J A Tuominen, L C Groop, J Henriksson, M Mueckler, A Sovijärvi, V A Koivisto

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 543 168
PDF 106 36
Figure 0 3
Scanned page 313 3
Citation downloads 109 0
Totals 1,071 210
Total Views 1,281
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts