Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Evidence for conductive Cl- pathway in the basolateral membrane of rabbit renal proximal tubule S3 segment.
G Seki, … , K Suzuki, K Kurokawa
G Seki, … , K Suzuki, K Kurokawa
Published September 1, 1993
Citation Information: J Clin Invest. 1993;92(3):1229-1235. https://doi.org/10.1172/JCI116694.
View: Text | PDF
Research Article

Evidence for conductive Cl- pathway in the basolateral membrane of rabbit renal proximal tubule S3 segment.

  • Text
  • PDF
Abstract

The mechanism of Cl- exit was examined in the basolateral membrane of rabbit renal proximal tubule S3 segment with double-barreled, ion-selective microelectrodes. After the basolateral Cl-/HCO3- exchanger was blocked by 2'-disulfonic acid, a bath K+ step from 5 to 20 mM induced 26.6 mV depolarization and 7.7 mM increase in intracellular Cl- activities ([Cl(-)]i). K+ channel blockers, Ba2+, and quinine strongly suppressed both the response in cell membrane potentials (Vb) and in (Cl-)i to the bath K+ step, while Cl- channel blockers, A9C (1 mM) and IAA-94 (0.3 mM) inhibited only the latter response by 49 and 74%, respectively. By contrast, an inhibitor of K(+)-Cl- cotransporter, H74, had no effect on the increase in (Cl-)i to the bath K+ step. Furosemide and the removal of bath Na+ were also ineffective, suggesting that (Cl-)i are sensitive to the cell potential changes. Bath Cl- removal in the presence of quinine induced a depolarization of more than 10 mV and a decrease in (Cl-)i, and IAA-94 inhibited these responses similarly in the bath K+ step experiments. These results indicate that a significant Cl- conductance exists in the basolateral membrane of this segment and functions as a Cl- exit mechanism.

Authors

G Seki, S Taniguchi, S Uwatoko, K Suzuki, K Kurokawa

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts