Ryanodine (RYA) at a low concentration (several tens of nM) is known to selectively bind to Ca2+ release channels in sarcoplasmic reticulum (SR) and to fix them open. The present study was designed to investigate the effects of the selective change in Ca2+ release channel activity on cardiac mechanoenergetics as a model of Ca(2+)-leaky SR observed in pathological hearts. We analyzed the negative inotropic effect of RYA at a low concentration (up to 30 +/- 13 nM) on left ventricular (LV) mechanoenergetics using frameworks of LV Emax (a contractility index) and the myocardial oxygen consumption (LV VO2)-systolic pressure-volume area (PVA) (a measure of total mechanical energy) relation in 11 isolated, blood-perfused dog hearts. RYA significantly decreased Emax by 42%, whereas PVA-independent VO2 remained disproportionately high (93% of control). This oxygen-wasting effect of RYA was quite different from ordinary inotropic drugs, which alter Emax and PVA-independent VO2 proportionally. The present result suggests that RYA suppresses force generation of cardiac muscle for a given amount of total sequestered Ca2+ by SR in a similar way to myocardial ischemia and stunning. We speculate about the underlying mechanism that RYA makes SR leaky for Ca2+ and thereby wastes energy for Ca2+ handling by SR.
T Takasago, Y Goto, O Kawaguchi, K Hata, A Saeki, T Nishioka, H Suga
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 89 | 0 |
50 | 11 | |
Scanned page | 295 | 3 |
Citation downloads | 75 | 0 |
Totals | 509 | 14 |
Total Views | 523 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.