Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Ryanodine wastes oxygen consumption for Ca2+ handling in the dog heart. A new pathological heart model.
T Takasago, … , T Nishioka, H Suga
T Takasago, … , T Nishioka, H Suga
Published August 1, 1993
Citation Information: J Clin Invest. 1993;92(2):823-830. https://doi.org/10.1172/JCI116656.
View: Text | PDF
Research Article

Ryanodine wastes oxygen consumption for Ca2+ handling in the dog heart. A new pathological heart model.

  • Text
  • PDF
Abstract

Ryanodine (RYA) at a low concentration (several tens of nM) is known to selectively bind to Ca2+ release channels in sarcoplasmic reticulum (SR) and to fix them open. The present study was designed to investigate the effects of the selective change in Ca2+ release channel activity on cardiac mechanoenergetics as a model of Ca(2+)-leaky SR observed in pathological hearts. We analyzed the negative inotropic effect of RYA at a low concentration (up to 30 +/- 13 nM) on left ventricular (LV) mechanoenergetics using frameworks of LV Emax (a contractility index) and the myocardial oxygen consumption (LV VO2)-systolic pressure-volume area (PVA) (a measure of total mechanical energy) relation in 11 isolated, blood-perfused dog hearts. RYA significantly decreased Emax by 42%, whereas PVA-independent VO2 remained disproportionately high (93% of control). This oxygen-wasting effect of RYA was quite different from ordinary inotropic drugs, which alter Emax and PVA-independent VO2 proportionally. The present result suggests that RYA suppresses force generation of cardiac muscle for a given amount of total sequestered Ca2+ by SR in a similar way to myocardial ischemia and stunning. We speculate about the underlying mechanism that RYA makes SR leaky for Ca2+ and thereby wastes energy for Ca2+ handling by SR.

Authors

T Takasago, Y Goto, O Kawaguchi, K Hata, A Saeki, T Nishioka, H Suga

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 89 0
PDF 50 11
Scanned page 295 3
Citation downloads 75 0
Totals 509 14
Total Views 523
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts