Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Beta spectrin kissimmee: a spectrin variant associated with autosomal dominant hereditary spherocytosis and defective binding to protein 4.1.
P S Becker, … , S E Lux, B G Forget
P S Becker, … , S E Lux, B G Forget
Published August 1, 1993
Citation Information: J Clin Invest. 1993;92(2):612-616. https://doi.org/10.1172/JCI116628.
View: Text | PDF
Research Article

Beta spectrin kissimmee: a spectrin variant associated with autosomal dominant hereditary spherocytosis and defective binding to protein 4.1.

  • Text
  • PDF
Abstract

We analyzed the DNA sequence of the cDNA encoding the NH2 terminal region of beta spectrin from members of a kindred with autosomal dominant hereditary spherocytosis associated with defective protein 4.1 binding. We found a point mutation at codon 202 within the 272 amino acid NH2-terminal region of beta spectrin. TGG was changed to CGG, resulting in the replacement of tryptophan by arginine. The base change eliminates a normally occurring PvuII restriction site and creates a new MspI site. This finding enabled rapid detection or exclusion of the mutation at the DNA level among the family members, including one member for whom this analysis was performed prenatally. The mutation was found only in the affected family members and occurred as a de novo mutation in the proband. It has not been found in 20 other kindreds. The recombinant peptide derived from the normal cDNA retains the capacity to sediment with protein 4.1 and F-actin. The mutant peptide spontaneously degrades. This variant represents both the first point mutation and the first beta spectrin mutation demonstrated in autosomal dominant hereditary spherocytosis. Furthermore, the mutation is located within a conserved sequence among spectrinlike proteins and may define an amino acid critical for protein 4.1 binding activity.

Authors

P S Becker, W T Tse, S E Lux, B G Forget

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 152 22
PDF 46 21
Scanned page 190 1
Citation downloads 51 0
Totals 439 44
Total Views 483
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts