Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116577

Highly efficient gene transfer into adult ventricular myocytes by recombinant adenovirus.

L A Kirshenbaum, W R MacLellan, W Mazur, B A French, and M D Schneider

Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Find articles by Kirshenbaum, L. in: JCI | PubMed | Google Scholar

Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Find articles by MacLellan, W. in: JCI | PubMed | Google Scholar

Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Find articles by Mazur, W. in: JCI | PubMed | Google Scholar

Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Find articles by French, B. in: JCI | PubMed | Google Scholar

Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Find articles by Schneider, M. in: JCI | PubMed | Google Scholar

Published July 1, 1993 - More info

Published in Volume 92, Issue 1 on July 1, 1993
J Clin Invest. 1993;92(1):381–387. https://doi.org/10.1172/JCI116577.
© 1993 The American Society for Clinical Investigation
Published July 1, 1993 - Version history
View PDF
Abstract

Molecular dissection of mechanisms that govern the differentiated cardiac phenotype has, for cogent technical reasons, largely been undertaken to date in neonatal ventricular myocytes. To circumvent expected limitations of other methods, the present study was initiated to determine whether replication-deficient adenovirus would enable efficient gene transfer to adult cardiac cells in culture. Adult rat ventricular myocytes were infected, 24 h after plating, with adenovirus type 5 containing a cytomegalovirus immediate-early promoter-driven lacZ reporter gene and were assayed for the presence of beta-galactosidase 48 h after infection. The frequency of lacZ+ rod-shaped myocytes was half-maximal at 4 x 10(5) plaque-forming units (PFU) and approached 90% at 1 x 10(8) PFU. Uninfected cells and cells infected with lacZ- virus remained colorless. Beta-galactosidase activity concurred with the proportion of lacZ+ cells and was contingent on the exogenous lacZ gene. At 10(8) PFU/dish, cell number, morphology, and viability each were comparable to uninfected cells. Thus, adult ventricular myocytes are amenable to efficient gene transfer with recombinant adenovirus. The relative uniformity for gene transfer by adenovirus should facilitate tests to determine the impact of putative regulators upon the endogenous genes and gene products of virally modified adult ventricular muscle cells.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 381
page 381
icon of scanned page 382
page 382
icon of scanned page 383
page 383
icon of scanned page 384
page 384
icon of scanned page 385
page 385
icon of scanned page 386
page 386
icon of scanned page 387
page 387
Version history
  • Version 1 (July 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts