Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Glucocorticoid induction of epinephrine synthesizing enzyme in rat skeletal muscle and insulin resistance.
B Kennedy, … , H Elayan, M G Ziegler
B Kennedy, … , H Elayan, M G Ziegler
Published July 1, 1993
Citation Information: J Clin Invest. 1993;92(1):303-307. https://doi.org/10.1172/JCI116567.
View: Text | PDF
Research Article

Glucocorticoid induction of epinephrine synthesizing enzyme in rat skeletal muscle and insulin resistance.

  • Text
  • PDF
Abstract

Rat skeletal muscle contains two enzymes which can make epinephrine: phenylethanolamine N-methyltransferase (PNMT) and nonspecific N-methyltransferase. We studied the time-course and mechanism by which the glucocorticoid dexamethasone increases muscle PNMT activity. We also examined the hypothesis that increased muscle E synthesis may contribute to glucocorticoid-induced insulin resistance. Dexamethasone (1 mg/kg s.c. for 12 d) increased muscle PNMT activity seven-fold but did not change NMT activity. Immunotitration with an anti-PNMT antibody indicated that the PNMT elevation was due to increased numbers of PNMT molecules. Dexamethasone rapidly increased PNMT activity and this elevation was largely maintained 6 d after glucocorticoid treatment stopped. Muscle epinephrine levels were transiently elevated by dexamethasone. Dexamethasone-treated rats had elevated insulin levels after a glucose load, and chronic administration of the PNMT inhibitor SKF 64139 reversed this increase. Chronic SKF 64139 improved glucose tolerance in normal rats. Dexamethasone induced muscle synthesis of the epinephrine-forming enzyme PNMT. A PNMT inhibitor lowered insulin levels in glucocorticoid-treated rats and glucose levels in untreated rats. These findings are compatible with antagonism of insulin-mediated glucose uptake by epinephrine synthesized in skeletal muscle.

Authors

B Kennedy, H Elayan, M G Ziegler

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 199 6
PDF 64 8
Scanned page 240 1
Citation downloads 62 0
Totals 565 15
Total Views 580
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts