The clearance of particulate triglyceride from the plasma of cholesterol-fed rats with appreciable stores of hepatic cholesterol ester produces a substantial increment in plasma cholesterol. Most of this plasma cholesterol increment arises from existing tissue sources. The increment begins from 4 to 6 h after clearance and is due to the appearance of larger cholesterol-rich, triglyceride-poor, beta migrating lipoproteins, which are isolated in the d < 1.063 fraction with an apoprotein (Apo) content consisting primarily of Apo E and smaller amounts of Apo B. A concurrent decrease in alpha lipoproteins occurs with the beta lipoprotein increment. Within 1 d of clearance the beta lipoproteins fall and alpha lipoproteins increase. The increase in total plasma Apo E and Apo B initially parallels that of the cholesterol, but it persists even when cholesterol falls. A modest decrease in plasma Apo A1 was observed during the time alpha lipoproteins declined. A significant increase in plasma lecithin cholesterol acyl transferase preceded the increase in beta lipoprotein cholesterol. This enzyme increment was absent in rats with little lipoprotein response despite increased hepatic cholesterol. In vivo inhibition of this enzyme with dithionitrobenzoic acid virtually eliminated the postclearance hypercholesterolemia. Plasma particulate triglyceride clearance induces an increase in beta lipoproteins. Coupling of this clearance and hepatic lipoprotein secretion occurs by an unknown mechanism modulated by lecithin cholesterol acyl transferase.
S H Quarfordt, B S Oswald, M O Farouk, D C Wehrenberg, E B Morton, B A Landis
Usage data is cumulative from October 2024 through October 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 119 | 0 |
72 | 3 | |
Figure | 0 | 2 |
Scanned page | 129 | 0 |
Citation downloads | 47 | 0 |
Totals | 367 | 5 |
Total Views | 372 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.