Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Alternative splicing: a mechanism for phenotypic rescue of a common inherited defect.
H Morisaki, … , L K Newby, E W Holmes
H Morisaki, … , L K Newby, E W Holmes
Published May 1, 1993
Citation Information: J Clin Invest. 1993;91(5):2275-2280. https://doi.org/10.1172/JCI116455.
View: Text | PDF
Research Article

Alternative splicing: a mechanism for phenotypic rescue of a common inherited defect.

  • Text
  • PDF
Abstract

Approximately 2% of Caucasians and African-Americans are homozygous for a nonsense mutation in exon 2 of the AMPD1 (AMP deaminase) gene. These individuals have a high grade deficiency of AMPD activity in their skeletal muscle. More than 100 patients with AMPD1 deficiency have been reported to have symptoms of a metabolic myopathy, but it is apparent many individuals with this inherited defect are asymptomatic given the prevalence of this mutant. Results of the present study provide a potential molecular explanation for "correction" of this genetic defect. Alternative splicing eliminates exon 2 in 0.6-2% of AMPD1 mRNA transcripts in adult skeletal muscle. Expression studies document that AMPD1 mRNA, which has exon 2 deleted, encodes a functional AMPD peptide. A much higher percentage of alternatively spliced transcripts are found during differentiation of human myocytes in vitro. Transfection studies with human minigene constructs demonstrate that alternative splicing of the primary transcript of human AMPD1 is controlled by tissue-specific and stage-specific signals. Alternative splicing of exon 2 in individuals who have inherited this defect provides a mechanism for phenotypic rescue and variations in splicing patterns may contribute to the variability in clinical symptoms.

Authors

H Morisaki, T Morisaki, L K Newby, E W Holmes

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts