Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Increased intestinal vitamin D receptor in genetic hypercalciuric rats. A cause of intestinal calcium hyperabsorption.
X Q Li, … , D A Bushinsky, M J Favus
X Q Li, … , D A Bushinsky, M J Favus
Published February 1, 1993
Citation Information: J Clin Invest. 1993;91(2):661-667. https://doi.org/10.1172/JCI116246.
View: Text | PDF
Research Article

Increased intestinal vitamin D receptor in genetic hypercalciuric rats. A cause of intestinal calcium hyperabsorption.

  • Text
  • PDF
Abstract

In humans, familial or idiopathic hypercalciuria (IH) is a common cause of hypercalciuria and predisposes to calcium oxalate nephrolithiasis. Intestinal calcium hyperabsorption is a constant feature of IH and may be due to either a vitamin D-independent process in the intestine, a primary overproduction of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], or a defect in renal tubular calcium reabsorption. Selective breeding of spontaneously hypercalciuric male and female Sprague-Dawley rats resulted in offspring with hypercalciuria, increased intestinal calcium absorption, and normal serum 1,25(OH)2D3 levels. The role of the vitamin D receptor (VDR) in the regulation of intestinal calcium absorption was explored in 10th generation male genetic IH rats and normocalciuric controls. Urine calcium excretion was greater in IH rats than controls (2.9 +/- 0.3 vs. 0.7 +/- 0.2 mg/24 h, P < 0.001). IH rat intestine contained twice the abundance of VDR compared with normocalciuric controls (536 +/- 73 vs. 243 +/- 42 nmol/mg protein, P < 0.001), with no difference in the affinity of the receptor for its ligand. Comparable migration of IH and normal intestinal VDR on Western blots and of intestinal VDR mRNA by Northern analysis suggests that the VDR in IH rat intestine is not due to large deletion or addition mutations of the wild-type VDR. IH rat intestine contained greater concentrations of vitamin D-dependent calbindin 9-kD protein. The present studies strongly suggest that increased intestinal VDR number and normal levels of circulating 1,25(OH)2D3 result in increased functional VDR-1,25(OH)2D3 complexes, which exert biological actions in enterocytes to increase intestinal calcium transport. Intestinal calcium hyperabsorption in the IH rat may be the first example of a genetic disorder resulting from a pathologic increase in VDR.

Authors

X Q Li, V Tembe, G M Horwitz, D A Bushinsky, M J Favus

×

Usage data is cumulative from September 2024 through September 2025.

Usage JCI PMC
Text version 195 10
PDF 43 13
Figure 0 2
Scanned page 172 4
Citation downloads 35 0
Totals 445 29
Total Views 474
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts