In hemodialysis patients, erythropoietin increases hemoglobin, but often the corresponding increase in peak oxygen uptake is low. The disproportionality may be caused by impaired energy metabolism. 31P-magnetic resonance spectroscopy was used to study muscle energy metabolism in 11 hemodialysis patients, 11 renal transplant recipients, and 9 controls. Measurements were obtained during rest, static hand-grip, and rhythmic hand-grip; recoveries were followed to baseline. During static hand-grip, there were no between-group differences in phosphocreatine (PCr), inorganic phosphate (Pi), or PCr/(PCr + Pi), although intracellular pH was higher in hemodialysis patients than transplant recipients. During rhythmic hand-grip, hemodialysis patients exhibited greater fatigue than transplant recipients or controls, and more reduction in PCr/(PCr + Pi) than transplant recipients. Intracellular pH was higher in controls than either hemodialysis patients or transplant recipients. Recoveries from both exercises were similar in all groups, indicating that subnormal oxidative metabolism was not caused by inability to make ATP. The rhythmic data suggest transplantation normalizes PCr/(PCr + Pi), but not pH. In hemodialysis patients, subnormal oxidative metabolism is apparently caused by limited exchange of metabolites between blood and muscle, rather than intrinsic oxidative defects in skeletal muscle.
G E Moore, L A Bertocci, P L Painter
Usage data is cumulative from July 2024 through July 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 147 | 2 |
98 | 14 | |
Scanned page | 216 | 5 |
Citation downloads | 118 | 0 |
Totals | 579 | 21 |
Total Views | 600 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.