Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Cytoskeleton-dependent endocytosis is required for apical type 1 angiotensin II receptor-mediated phospholipase C activation in cultured rat proximal tubule cells.
J R Schelling, … , R Marzec, S L Linas
J R Schelling, … , R Marzec, S L Linas
Published December 1, 1992
Citation Information: J Clin Invest. 1992;90(6):2472-2480. https://doi.org/10.1172/JCI116139.
View: Text | PDF
Research Article

Cytoskeleton-dependent endocytosis is required for apical type 1 angiotensin II receptor-mediated phospholipase C activation in cultured rat proximal tubule cells.

  • Text
  • PDF
Abstract

Renal proximal tubule sodium reabsorption is enhanced by apical or basolateral angiotensin II (AII). Although AII activates phospholipase C (PLC) in other tissues, AII coupling to PLC on either apical or basolateral surfaces of proximal tubule cells is unclear. To determine if AII causes PLC activation, and the differences between apical and basolateral AII receptor function, receptors were unilaterally activated in rat proximal tubule cells cultured on permeable, collagen-coated supports. Apical AII incubation resulted in concentration- and time-dependent inositol trisphosphate (IP3) formation. Basolateral AII caused greater IP3 responses. Apical AII-induced IP3 generation was inhibited by DuP 753, suggesting that the type 1 AII receptor subtype mediated proximal tubule PLC activation. Apical AII signaling did not result from paracellular ligand leak to basolateral receptors since AII-induced PLC activation occurred when basolateral AII receptors were occupied by Sar-Leu AII or DuP 753. Inhibition of endocytosis with phenylarsine oxide prevented apical (but not basolateral) AII-induced IP3 formation. Cytoskeletal disruption with colchicine or cytochalasin D also prevented apical AII-induced IP3 generation. These results demonstrate that in cultured rat proximal tubule cells, AII is coupled to PLC via type 1 AII receptors and cytoskeleton-dependent endocytosis is required for apical (but not basolateral) AII receptor-mediated PLC activation.

Authors

J R Schelling, A S Hanson, R Marzec, S L Linas

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 116 3
PDF 45 16
Figure 0 1
Scanned page 332 3
Citation downloads 59 0
Totals 552 23
Total Views 575
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts