Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Role of protein kinase C in parathyroid hormone stimulation of renal 1,25-dihydroxyvitamin D3 secretion.
M Janulis, … , V Tembe, M J Favus
M Janulis, … , V Tembe, M J Favus
Published December 1, 1992
Citation Information: J Clin Invest. 1992;90(6):2278-2283. https://doi.org/10.1172/JCI116114.
View: Text | PDF
Research Article

Role of protein kinase C in parathyroid hormone stimulation of renal 1,25-dihydroxyvitamin D3 secretion.

  • Text
  • PDF
Abstract

PTH is a major regulator of renal proximal tubule 1,25(OH)2D3 biosynthesis. However, the intracellular pathways involved in PTH activation of the mitochondrial 25-hydroxyvitamin D3-1 alpha-hydroxylase (1-OHase) remain unknown. PTH can activate both the adenylate cyclase/protein kinase A (PKA) and the plasma membrane phospholipase C/protein kinase C (PKC) pathways. The present study was undertaken to determine whether PKC may mediate PTH activation of renal 25-hydroxyvitamin D3-1 alpha-hydroxylase activity. Rat PTH 1-34 fragment in vitro translocated PKC activity from cytosolic to soluble membrane fraction from freshly prepared rat proximal tubules. Physiologic concentrations (10(-11)-10(-10) M) of rat PTH 1-34 fragment increased PKC translocation three- to fourfold while PKA activity ratio increased at PTH 10(-7) M. PTH stimulation of PKC and PKA was reduced in the presence of staurosporine (10 nM) by 41 and 29%, respectively. Sangivamycin (10 and 50 microM) also reduced PTH-stimulated PKC translocation, but did not alter PKA activity ratio. In vitro perifusion of renal proximal tubules with PTH (10(-11) M) increased 1,25(OH)2D3 steady-state secretion two- to fourfold. Sangivamycin at the same concentration that inhibited PKC translocation by 52% completely inhibited PTH-stimulated 1,25(OH)2D3 secretion. The present studies indicate that the phospholipase C/PKC pathway may mediate PTH stimulation of mammalian renal proximal tubule 1,25(OH)2D3 secretion.

Authors

M Janulis, V Tembe, M J Favus

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 117 7
PDF 64 10
Scanned page 240 4
Citation downloads 72 0
Totals 493 21
Total Views 514
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts