Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116073

Distinct localization of collagenase and tissue inhibitor of metalloproteinases expression in wound healing associated with ulcerative pyogenic granuloma.

U K Saarialho-Kere, E S Chang, H G Welgus, and W C Parks

Division of Dermatology, Jewish Hospital, St. Louis, Missouri 63110.

Find articles by Saarialho-Kere, U. in: JCI | PubMed | Google Scholar

Division of Dermatology, Jewish Hospital, St. Louis, Missouri 63110.

Find articles by Chang, E. in: JCI | PubMed | Google Scholar

Division of Dermatology, Jewish Hospital, St. Louis, Missouri 63110.

Find articles by Welgus, H. in: JCI | PubMed | Google Scholar

Division of Dermatology, Jewish Hospital, St. Louis, Missouri 63110.

Find articles by Parks, W. in: JCI | PubMed | Google Scholar

Published November 1, 1992 - More info

Published in Volume 90, Issue 5 on November 1, 1992
J Clin Invest. 1992;90(5):1952–1957. https://doi.org/10.1172/JCI116073.
© 1992 The American Society for Clinical Investigation
Published November 1, 1992 - Version history
View PDF
Abstract

To examine the role of metalloproteinases in tissue remodeling associated with wound healing, we used in situ hybridization to localize the expression of collagenase and tissue inhibitor of metalloproteinases (TIMP) in samples of pyogenic granuloma. Strong hybridization for collagenase mRNA was detected in basal keratinocytes near the advancing edge of all ulcerative lesions, but no collagenase mRNA was seen in samples without ulceration. Distinct from the sites of collagenase expression, TIMP mRNA was detected in stromal cells and in cells surrounding proliferating vessels. No collagenase mRNA was found in the epidermis of healthy skin, although occasional stromal cells contained collagenase or TIMP mRNAs, and TIMP mRNA was detected in hair follicles and sebaceous glands. Our results suggest that basal keratinocytes adjacent to wounded epidermis are critically involved in matrix remodeling, much more so than adjacent or underlying dermal fibroblasts. Furthermore, as several reports have suggested, TIMP may play a role in angiogenesis. Finally, in contrast to findings from other models which indicate that collagenase and TIMP proteins are secreted by the same cells, our data also demonstrate that these proteins can be produced in vivo independently of each other.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1952
page 1952
icon of scanned page 1953
page 1953
icon of scanned page 1954
page 1954
icon of scanned page 1955
page 1955
icon of scanned page 1956
page 1956
icon of scanned page 1957
page 1957
Version history
  • Version 1 (November 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts