Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Endothelin inhibits vasopressin-stimulated water permeability in rat terminal inner medullary collecting duct.
S P Nadler, … , J A Zimpelmann, R L Hébert
S P Nadler, … , J A Zimpelmann, R L Hébert
Published October 1, 1992
Citation Information: J Clin Invest. 1992;90(4):1458-1466. https://doi.org/10.1172/JCI116013.
View: Text | PDF
Research Article

Endothelin inhibits vasopressin-stimulated water permeability in rat terminal inner medullary collecting duct.

  • Text
  • PDF
Abstract

Renal tubule solute and water transport is subject to regulation by numerous factors. To characterize direct effects of the recently discovered peptide endothelin (ET) on renal tubule transport, we determined signaling mechanisms for ET effects on vasopressin (AVP)-stimulated water permeability (PF) in rat terminal inner medullary collecting duct (IMCD) perfused in vitro. ET caused a rapid, dose-dependent, and reversible fall in AVP- but not cyclic AMP-stimulated PF, suggesting that its effect on PF is by inhibition of cyclic AMP accumulation. Indomethacin did not block ET actions, ruling out a role for prostaglandins in its effect. The protein kinase C (PKC) inhibitor calphostin, or pretreatment of perfused tubules with pertussis toxin, blocked ET-mediated inhibition of AVP-stimulated PF. ET caused a transient increase in intracellular calcium ([Ca2+]i) in perfused tubules, an effect unchanged in zero calcium bath or by PT pretreatment. ET effects on PF and [Ca2+]i desensitized rapidly. Inhibition of PF was transient and largely abolished by 20 min ET preexposure, and repeat exposure to ET did not alter [Ca2+]i. In contrast, PGE2-mediated inhibition of AVP-stimulated PF and increase of [Ca2+]i were sustained and unaltered by prior exposure of IMCD to ET. Thus desensitization to ET is homologous. We conclude that ET is a potent inhibitor of AVP-stimulated water permeability in rat terminal IMCD. Signaling pathways for its effects involve both an inhibitory guanine nucleotide-binding protein and phospholipase-mediated activation of PKC. Since ET is synthesized by IMCD cells, this peptide may be an important autocrine modulator of renal epithelial transport.

Authors

S P Nadler, J A Zimpelmann, R L Hébert

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 129 5
PDF 79 6
Scanned page 407 4
Citation downloads 161 0
Totals 776 15
Total Views 791
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts