Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Electroneutral K+/HCO3- cotransport in cells of medullary thick ascending limb of rat kidney.
F Leviel, … , M Paillard, M Bichara
F Leviel, … , M Paillard, M Bichara
Published September 1, 1992
Citation Information: J Clin Invest. 1992;90(3):869-878. https://doi.org/10.1172/JCI115962.
View: Text | PDF
Research Article

Electroneutral K+/HCO3- cotransport in cells of medullary thick ascending limb of rat kidney.

  • Text
  • PDF
Abstract

The renal medullary thick ascending limb (MTAL) of the rat absorbs bicarbonate through luminal H+ secretion and basolateral HCO3- transport into the peritubular space. To characterize HCO3- transport, intracellular pH (pHi) was monitored by use of the pH-sensitive fluorescent probe (2',7')-bis-(carboxyethyl)-(5,6)-carboxyfluorescein in fresh suspensions of rat MTAL tubules. When cells were preincubated in HCO3-/CO2-containing solutions and then abruptly diluted into HCO3-/CO2-free media, the pHi response was an initial alkalinization due to CO2 efflux, followed by an acidification (pHi recovery). The pHi recovery required intracellular HCO3-, was inhibited by 10(-4) M diisothiocyanostilbene-2-2'-disulphonic acid (DIDS), and was not dependent on Cl- or Na+. As assessed by use of the cell membrane potential-sensitive fluorescent probe 3,3'-dipropylthiadicarbocyanine, cell depolarization by abrupt Cl- removal from or addition of 2 mM barium into the external medium did not affect HCO3(-)-dependent pHi recovery, and the latter was not associated per se with any change in potential difference, which indicated that HCO3- transport was electroneutral. The HCO3(-)-dependent pHi recovery was inhibited by raising extracellular potassium concentration and by intracellular potassium depletion. Finally, as measured by use of a K(+)-selective extracellular electrode, a component of K+ efflux out of the cells was HCO3- dependent and DIDS sensitive. The results provide evidence for an electroneutral K+/HCO3- cotransport in rat MTAL cells.

Authors

F Leviel, P Borensztein, P Houillier, M Paillard, M Bichara

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 130 8
PDF 42 16
Scanned page 355 1
Citation downloads 68 0
Totals 595 25
Total Views 620
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts