Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Platelet-activating factor-mediated transmembrane signaling in human B lymphocytes is regulated through a pertussis- and cholera toxin-sensitive pathway.
B D Mazer, … , A Tordai, E W Gelfand
B D Mazer, … , A Tordai, E W Gelfand
Published September 1, 1992
Citation Information: J Clin Invest. 1992;90(3):759-765. https://doi.org/10.1172/JCI115948.
View: Text | PDF
Research Article

Platelet-activating factor-mediated transmembrane signaling in human B lymphocytes is regulated through a pertussis- and cholera toxin-sensitive pathway.

  • Text
  • PDF
Abstract

Platelet-activating factor (PAF) stimulates human B cells, resulting in elevation of intracellular calcium and the release of inositol phosphates. This signaling pathway is inhibited in the presence of pertussis (PT) or cholera toxin (CT). Preincubation of human B cells with either toxin, but not their inactive subunits, for 3 h blocked these PAF-induced responses in two B-lymphoblastoid cell lines. This effect was time dependent, with some inhibition noted at 30 min, but only after preincubation for 2-3 h was maximum inhibition achieved. This inhibitory activity was also dose dependent. The toxins blocked both PAF-induced transmembrane uptake of Ca2+ as well as release of Ca2+ from internal stores, and were selective in that activation events after cross-linking of surface IgM were not affected. Further, the toxins did not appear to act through elevation of intracellular levels of cAMP. These data, coupled with previous observations on the absence of heterologous desensitization between PAF and sIgM receptors, may delineate distinct signaling pathways in human B cells. This may reflect different roles for GTP-binding proteins in the activation of human B cells.

Authors

B D Mazer, H Sawami, A Tordai, E W Gelfand

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 134 1
PDF 44 10
Scanned page 252 1
Citation downloads 69 0
Totals 499 12
Total Views 511
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts