Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Human neutrophil annexin I promotes granule aggregation and modulates Ca(2+)-dependent membrane fusion.
J W Francis, … , D I Margolis, L A Boxer
J W Francis, … , D I Margolis, L A Boxer
Published August 1, 1992
Citation Information: J Clin Invest. 1992;90(2):537-544. https://doi.org/10.1172/JCI115892.
View: Text | PDF
Research Article

Human neutrophil annexin I promotes granule aggregation and modulates Ca(2+)-dependent membrane fusion.

  • Text
  • PDF
Abstract

The mechanism and cofactor requirements of exocytotic membrane fusion in neutrophils are unknown. Cytosolic proteins have been implicated in membrane fusion events. We assessed neutrophil cytosol for the presence of fusogenic proteins using a liposome fusion assay (lipid mixing). A fusogenic 36-kD protein containing amino acid sequence homology with human annexin I was purified from the cytosol of human neutrophils. This protein also shared functional characteristics with annexin I: it associated with and promoted lipid mixing of liposomes in a Ca(2+)-dependent manner at micromolar Ca2+ concentrations. The 36-kD protein required diacylglycerol to promote true fusion (contents mixing) at the same Ca2+ concentrations used for lipid mixing. The 36-kD protein exhibited a biphasic dose-response curve, by both promoting and inhibiting Ca(2+)-dependent lipid-mixing between liposomes and a plasma membrane fraction. The 36-kD protein also promoted Ca(2+)-dependent increases in aggregation of a specific granule fraction, as measured by a turbidity increase. Antiannexin I antibodies depleted the 36-kD protein from the cytosol by greater than 70% and diminished its ability to promote lipid mixing. Antiannexin I antibodies also decreased by greater than 75% the ability of neutrophil cytosol to promote Ca(2+)-dependent aggregation of the specific granules. These data suggest that annexin I may be involved in aggregation and fusion events in neutrophils.

Authors

J W Francis, K J Balazovich, J E Smolen, D I Margolis, L A Boxer

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts