Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Only three mutations account for almost all defective alleles causing adenine phosphoribosyltransferase deficiency in Japanese patients.
N Kamatani, … , H Yoshikawa, S Kashiwazaki
N Kamatani, … , H Yoshikawa, S Kashiwazaki
Published July 1, 1992
Citation Information: J Clin Invest. 1992;90(1):130-135. https://doi.org/10.1172/JCI115825.
View: Text | PDF
Research Article

Only three mutations account for almost all defective alleles causing adenine phosphoribosyltransferase deficiency in Japanese patients.

  • Text
  • PDF
Abstract

We analyzed mutant alleles of adenine phosphoribosyltransferase (APRT) deficiency in Japanese patients. Among 141 defective APRT alleles from 72 different families, 96 (68%), 30 (21%), and 10 (7%) had an ATG to ACG missense mutation at codon 136 (APRT*J allele), TGG to TGA nonsense mutation at codon 98, and duplication of a 4-bp sequence in exon 3, respectively. The disease-causing mutations of only four (3%) of all the alleles among Japanese remain to be elucidated. Thus, a diagnosis can be made for most of the Japanese APRT-deficient patients by identifying only three disease-causing mutations. All of the different alleles with the same mutation had the same haplotype, except for APRT*J alleles, thereby suggesting that alleles with the same mutation in different families were derived from the same ancestral gene. Evidence for a crossover or gene conversion event within the APRT gene was observed in an APRT*J mutant allele. Distribution of mutant alleles encoding APRT deficiency among the Japanese was similar to that seen in cystic fibrosis genes among Caucasians and Tay-Sachs genes among the Ashkenazi Jews.

Authors

N Kamatani, M Hakoda, S Otsuka, H Yoshikawa, S Kashiwazaki

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 182 8
PDF 53 32
Scanned page 231 2
Citation downloads 48 0
Totals 514 42
Total Views 556
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts