Two insulin receptor mRNA transcripts resulting from alternative splicing of exon 11 in the receptor gene are expressed in a highly regulated tissue-specific fashion. To date, there is no information about the relative abundance of the protein isoforms encoded by these mRNAs in tissues of normal or diabetic subjects. We employed an antibody raised against the peptide sequence encoded by exon 11 to develop a specific immunoprecipitation assay that is capable of determining the fraction of receptors that include this amino acid sequence. The assay is based on the relative ability of the exon 11 specific monoclonal antibody (alpha IR alpha) compared to a nonspecific anti-receptor antiserum (B-2) to immunoprecipitate solubilized receptors that are first labeled with 125I-insulin. The assay was validated using standard curves generated with samples composed of known ratios of the two receptor isoforms. Our results in general confirm observations regarding the relative abundance of the two mRNA species in human tissues, with marked predominance of the exon 11+ isoform in liver, and the exon 11- isoform in leukocytes. Similar amounts of both variants are present in placenta, skeletal muscle, and adipose tissue. In studies with this assay using skeletal muscle extracts from control and noninsulin-dependent diabetes mellitus (NIDDM) subjects, as well as in studies of the two mRNAs in control versus NIDDM muscle using a quantitative polymerase chain reaction assay, we could find no significant difference between control and diabetic subjects. This data contradicts a recent report claiming that normal individuals have only the exon 11- mRNA transcript in their skeletal muscle, whereas NIDDM subjects have similar expression of both mRNAs. Given the emerging evidence that functional differences exist between the two receptor isoforms, these studies are relevant to our understanding of insulin receptor function in health and disease.
H Benecke, J S Flier, D E Moller
Usage data is cumulative from December 2022 through December 2023.
Usage | JCI | PMC |
---|---|---|
Text version | 112 | 0 |
22 | 29 | |
Figure | 0 | 5 |
Scanned page | 31 | 15 |
Citation downloads | 11 | 0 |
Totals | 176 | 49 |
Total Views | 225 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.