Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Lipoproteins containing the truncated apolipoprotein, Apo B-89, are cleared from human plasma more rapidly than Apo B-100-containing lipoproteins in vivo.
K G Parhofer, … , D M Bier, G Schonfeld
K G Parhofer, … , D M Bier, G Schonfeld
Published June 1, 1992
Citation Information: J Clin Invest. 1992;89(6):1931-1937. https://doi.org/10.1172/JCI115799.
View: Text | PDF
Research Article

Lipoproteins containing the truncated apolipoprotein, Apo B-89, are cleared from human plasma more rapidly than Apo B-100-containing lipoproteins in vivo.

  • Text
  • PDF
Abstract

We have reported previously on two truncations of apolipoprotein B (apo B-40 and apo B-89) in a kindred with hypobetalipoproteinemia. Premature stop codons were found to be responsible for both apo B-40 and apo B-89, but the physiologic mechanisms accounting for the reduced plasma concentrations of these proteins have not been determined in vivo. This study investigates the metabolism of apo B-89 in two subjects heterozygous for apo B-89/apo B-100 and in one apo B-40/apo B-89 compound heterozygote. In both heterozygotes total apo B concentration is approximately 30% of normal and apo B-89 is present in lower concentrations in plasma than apo B-100. After the administration of [1-13C]leucine as a primed constant infusion over 8 h, 13C enrichments of plasma leucine as well as enrichments of VLDL-, IDL-, and LDL-apo B-89 leucine and VLDL-, IDL-, and LDL-apo B-100 leucine were measured over 110 h. Enrichment values were subsequently converted to tracer/tracee ratios and a multicompartmental model was used to estimate metabolic parameters. In both apo B-89/apo B-100 heterozygotes apo B-89 and apo B-100 were produced at similar rates. Respective transport rates of apo B-89 and apo B-100 for subject 1 were 2.13 +/- 0.18 and 2.56 +/- 0.13 mg.kg-1.d-1, and for subject 2, 6.59 +/- 0.18 and 8.23 +/- 0.39 mg.kg-1.d-1. However, fractional catabolic rates of VLDL, IDL, and LDL particles containing apo B-89 were 1.4-3 times higher than the rates for corresponding apo B-100-containing particles. Metabolic parameters of apo B-89 in the apo B-40/apo B-89 compound heterozygote compared favorably with those established for apo B-89 in apo B-89/apo B-100 heterozygotes. Thus, the enhanced catabolism of VLDL, IDL, and LDL particles containing the truncated apolipoprotein is responsible for the relatively low levels of apo B-89 seen in these subjects.

Authors

K G Parhofer, P H Barrett, D M Bier, G Schonfeld

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 123 2
PDF 50 15
Scanned page 278 4
Citation downloads 63 0
Totals 514 21
Total Views 535
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts