Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Meningococcal endotoxin in lethal septic shock plasma studied by gas chromatography, mass-spectrometry, ultracentrifugation, and electron microscopy.
P Brandtzaeg, … , B Aase, E Jantzen
P Brandtzaeg, … , B Aase, E Jantzen
Published March 1, 1992
Citation Information: J Clin Invest. 1992;89(3):816-823. https://doi.org/10.1172/JCI115660.
View: Text | PDF
Research Article

Meningococcal endotoxin in lethal septic shock plasma studied by gas chromatography, mass-spectrometry, ultracentrifugation, and electron microscopy.

  • Text
  • PDF
Abstract

We have compared gas chromatography and mass spectrometry (GC-MS) analysis with the Limulus amebocyte lysate (LAL) assay to quantify native meningococcal lipopolysaccharides (LPS) in five patient plasmas containing greater than 5 micrograms/liter by LAL. 3-Hydroxy lauric acid (3-OH-12:0) was used as a specific lipid A marker of neisserial LPS. The quantitative LAL results were confirmed by GC-MS (r = 0.98, P = 0.006). Seven patient plasmas were centrifuged at 103,000 g and the sedimentation behavior of native LPS compared with reference plasma proteins and with apo A1 and apo B100 representing high and low density lipoproteins. After 15 min of centrifugation, 84 +/- 2% (mean +/- SE) of the recovered LPS were found in the lower one-third of the centrifuged volume, whereas 6 +/- 1% remained in the upper one-third volume, indicating that meningococcal endotoxin circulates as complexes with high sedimentation coefficients. Bacterial outer membrane fragments were detected in the bottom fractions of three patient plasmas examined by means of electron microscopy. In three patient plasmas ultracentrifuged for 60 min at 103,000 g, the levels of apo A1 and apo B100 revealed minor changes, whereas only 1 +/- 1% of the recovered LPS remained in the upper one-third and 91 +/- 2% were found in the lower one-third volume. Few bioreactive LPS appear to be complexed with high and low density lipoproteins in meningococcal septic shock plasma.

Authors

P Brandtzaeg, K Bryn, P Kierulf, R Ovstebø, E Namork, B Aase, E Jantzen

×

Usage data is cumulative from October 2024 through October 2025.

Usage JCI PMC
Text version 499 31
PDF 61 6
Figure 0 1
Scanned page 168 2
Citation downloads 54 0
Totals 782 40
Total Views 822
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts