Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115636

Molecular basis for membrane rigidity of hereditary ovalocytosis. A novel mechanism involving the cytoplasmic domain of band 3.

N Mohandas, R Winardi, D Knowles, A Leung, M Parra, E George, J Conboy, and J Chasis

Lawrence Berkeley Laboratory, University of California, Berkeley 94720.

Find articles by Mohandas, N. in: JCI | PubMed | Google Scholar

Lawrence Berkeley Laboratory, University of California, Berkeley 94720.

Find articles by Winardi, R. in: JCI | PubMed | Google Scholar

Lawrence Berkeley Laboratory, University of California, Berkeley 94720.

Find articles by Knowles, D. in: JCI | PubMed | Google Scholar

Lawrence Berkeley Laboratory, University of California, Berkeley 94720.

Find articles by Leung, A. in: JCI | PubMed | Google Scholar

Lawrence Berkeley Laboratory, University of California, Berkeley 94720.

Find articles by Parra, M. in: JCI | PubMed | Google Scholar

Lawrence Berkeley Laboratory, University of California, Berkeley 94720.

Find articles by George, E. in: JCI | PubMed | Google Scholar

Lawrence Berkeley Laboratory, University of California, Berkeley 94720.

Find articles by Conboy, J. in: JCI | PubMed | Google Scholar

Lawrence Berkeley Laboratory, University of California, Berkeley 94720.

Find articles by Chasis, J. in: JCI | PubMed | Google Scholar

Published February 1, 1992 - More info

Published in Volume 89, Issue 2 on February 1, 1992
J Clin Invest. 1992;89(2):686–692. https://doi.org/10.1172/JCI115636.
© 1992 The American Society for Clinical Investigation
Published February 1, 1992 - Version history
View PDF
Abstract

Hereditary ovalocytic red cells are characterized by a marked increase in membrane rigidity and resistance to invasion by malarial parasites. The underlying molecular defect in ovalocytes remained a mystery until Liu and colleagues (N. Engl. J. Med. 1990. 323:1530-38) made the surprising observation that the ovalocytic phenotype was linked to a structural polymorphism in band 3, the anion transporter. We have now defined the mutation in band 3 gene and established the biophysical sequelae of this mutation. This mutation involves the deletion of amino-acids 400-408 in the boundary between the cytoplasmic and the first transmembrane domains of band 3. The biophysical consequences of this mutation are a marked decrease in lateral mobility of band 3 and an increase in membrane rigidity. Based on these findings, we propose the following model for increased membrane rigidity. The mutation induces a conformational change in the cytoplasmic domain of band 3, leading to its entanglement in the skeletal protein network. This entanglement inhibits the normal unwinding and stretching of the spectrin tetramers necessary for membrane extension, leading to increased rigidity. These findings imply that the cytoplasmic domain of an integral membrane protein can have profound effects on membrane material behavior.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 686
page 686
icon of scanned page 687
page 687
icon of scanned page 688
page 688
icon of scanned page 689
page 689
icon of scanned page 690
page 690
icon of scanned page 691
page 691
icon of scanned page 692
page 692
Version history
  • Version 1 (February 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts