Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need Help? E-mail the JCI
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115624

Molecular studies on primary lipoprotein lipase (LPL) deficiency. One base deletion (G916) in exon 5 of LPL gene causes no detectable LPL protein due to the absence of LPL mRNA transcript.

A Takagi, Y Ikeda, Z Tsutsumi, T Shoji, and A Yamamoto

Department of Etiology and Pathophysiology, National Cardiovascular Center Research Institute, Osaka, Japan.

Find articles by Takagi, A. in: JCI | PubMed | Google Scholar

Department of Etiology and Pathophysiology, National Cardiovascular Center Research Institute, Osaka, Japan.

Find articles by Ikeda, Y. in: JCI | PubMed | Google Scholar

Department of Etiology and Pathophysiology, National Cardiovascular Center Research Institute, Osaka, Japan.

Find articles by Tsutsumi, Z. in: JCI | PubMed | Google Scholar

Department of Etiology and Pathophysiology, National Cardiovascular Center Research Institute, Osaka, Japan.

Find articles by Shoji, T. in: JCI | PubMed | Google Scholar

Department of Etiology and Pathophysiology, National Cardiovascular Center Research Institute, Osaka, Japan.

Find articles by Yamamoto, A. in: JCI | PubMed | Google Scholar

Published February 1, 1992 - More info

Published in Volume 89, Issue 2 on February 1, 1992
J Clin Invest. 1992;89(2):581–591. https://doi.org/10.1172/JCI115624.
© 1992 The American Society for Clinical Investigation
Published February 1, 1992 - Version history
View PDF
Abstract

We have systematically investigated a genetic defect resulting in a primary lipoprotein lipase (LPL) deficiency in a proband TN and his affected brother SN, both manifesting familial hyperchylomicronemia. Neither LPL activity nor immunoreactive LPL mass was detected in postheparin plasma from the two patients. Immunocytochemical and biosynthetic studies on the proband's monocyte-derived macrophages with rabbit anti-human LPL antiserum revealed that no immunochemically detectable LPL protein was found in either the cells or culture medium, whereas LPL having a molecular mass of 61 kD was detected in normal cells. No detectable LPL mRNA was identified from poly(A)+RNA of the proband's macrophages by Northern blot analysis, and grossly visible LPL gene rearrangement was not observed by Southern blot analysis. Sequence analysis of polymerase chain reaction-amplified LPL gene exons detected one base deletion of G (first position of Ala221) at base 916 in exon 5 which leads to a premature termination by a frameshift. This mutation, designated as LPLArita and resulting in the loss of an AluI restriction enzyme site, was newly identified. We further analyzed the LPL gene from the two patients and their family members by digestion with AluI. Both patients were homozygous for LPLArita allele, while their spouses did not have this mutation. As genetically expected, their children were all heterozygous for LPLArita. We conclude that primary LPL deficiency in the proband was caused by a lack of enzyme synthesis due to the absence of LPL mRNA resulting from one base deletion of G in exon 5, and that heterozygous LPLArita deficient subjects show almost half value of control LPL mass.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 581
page 581
icon of scanned page 582
page 582
icon of scanned page 583
page 583
icon of scanned page 584
page 584
icon of scanned page 585
page 585
icon of scanned page 586
page 586
icon of scanned page 587
page 587
icon of scanned page 588
page 588
icon of scanned page 589
page 589
icon of scanned page 590
page 590
icon of scanned page 591
page 591
Version history
  • Version 1 (February 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need Help? E-mail the JCI

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts