Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Calcium and potassium are important regulators of barrier homeostasis in murine epidermis.
S H Lee, … , M Mao-Quiang, K R Feingold
S H Lee, … , M Mao-Quiang, K R Feingold
Published February 1, 1992
Citation Information: J Clin Invest. 1992;89(2):530-538. https://doi.org/10.1172/JCI115617.
View: Text | PDF
Research Article

Calcium and potassium are important regulators of barrier homeostasis in murine epidermis.

  • Text
  • PDF
Abstract

Topical solvent treatment removes lipids from the stratum corneum leading to a marked increase in transepidermal water loss (TEWL). This disturbance stimulates a variety of metabolic changes in the epidermis leading to rapid repair of the barrier defect. Using an immersion system we explored the nature of the signal leading to barrier repair in intact mice. Initial experiments using hypotonic to hypertonic solutions showed that water transit per se was not the crucial signal. However, addition of calcium at concentrations as low as 0.01 mM inhibited barrier repair. Moreover, both verapamil and nifedipine, which block calcium transport into cells, prevented the calcium-induced inhibition of TEWL recovery. Additionally, trifluoroperazine or N-6-aminohexyl-5-chloro-1-naphthalenesulfonamide, which inhibit calmodulin, prevented the calcium-induced inhibition of TEWL recovery. Although these results suggest an important role for calcium in barrier homeostasis, calcium alone was only modestly effective in inhibiting TEWL recovery. Potassium alone (10 mM) and phosphate alone (5 mM) also produced a modest inhibition of barrier repair. Together, however, calcium and potassium produced a synergistic inhibition of barrier repair (control 50% recovery vs. calcium + potassium 0-11% recovery in 2.5 h). Furthermore, in addition to inhibiting TEWL recovery, calcium and potassium also prevented the characteristic increase in 3-hydroxy-3-glutaryl CoA reductase activity that occurs after barrier disruption. Finally, the return of lipids to the stratum corneum was also blocked by calcium and potassium. These results demonstrate that the repair of the epidermal permeability barrier after solvent disruption can be prevented by calcium, potassium, and phosphate. The repair process may be signalled by a decrease in the concentrations of these ions in the upper epidermis resulting from increased water flux leading to passive loss of these ions.

Authors

S H Lee, P M Elias, E Proksch, G K Menon, M Mao-Quiang, K R Feingold

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 382 109
PDF 72 34
Scanned page 365 24
Citation downloads 66 0
Totals 885 167
Total Views 1,052
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts