Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115611

Exacerbation of ischemic dysfunction by angiotensin II in red cell-perfused rabbit hearts. Effects on coronary flow, contractility, and high-energy phosphate metabolism.

T Mochizuki, F R Eberli, C S Apstein, and B H Lorell

Charles A. Dana Research Institute, Beth Israel Hospital, Boston, massachusetts.

Find articles by Mochizuki, T. in: PubMed | Google Scholar

Charles A. Dana Research Institute, Beth Israel Hospital, Boston, massachusetts.

Find articles by Eberli, F. in: PubMed | Google Scholar

Charles A. Dana Research Institute, Beth Israel Hospital, Boston, massachusetts.

Find articles by Apstein, C. in: PubMed | Google Scholar

Charles A. Dana Research Institute, Beth Israel Hospital, Boston, massachusetts.

Find articles by Lorell, B. in: PubMed | Google Scholar

Published February 1, 1992 - More info

Published in Volume 89, Issue 2 on February 1, 1992
J Clin Invest. 1992;89(2):490–498. https://doi.org/10.1172/JCI115611.
© 1992 The American Society for Clinical Investigation
Published February 1, 1992 - Version history
View PDF
Abstract

We studied the effects of angiotensin II during low-flow ischemia and reperfusion using red cell-perfused isovolumic rabbit hearts. Under baseline conditions where coronary perfusion pressure (CPP) was 100 mm Hg and left ventricular end-diastolic pressure (LVEDP) was set at 10 mm Hg, 10(-8) M angiotensin II caused a mild increase in LV developed pressure (+12%) and decrease in coronary flow (-8%). Low-flow ischemia was imposed by reducing CPP to 15 mm Hg for 30 min followed by 30 min of reperfusion. During ischemia, the angiotensin II group showed a gradual further reduction in coronary flow in association with a greater depression of LV developed pressure and increase in LVEDP relative to the no-drug group. To separate the effect of angiotensin II on coronary flow from a direct myocardial effect, the angiotensin II group was compared with an additional no-drug group with a matched progressive reduction in coronary flow during ischemia. In these groups, the ischemic depression of LV developed pressure, myocardial ATP levels, and lactate production were similar. However, the ischemic rise in LVEDP was greater (42.0 +/- 5.4 vs. 19.9 +/- 1.3 mm Hg, P less than 0.01) and recovery was incomplete in the angiotensin II group. These observations suggest that angiotensin II exerts a direct adverse effect on LV diastolic relaxation during low-flow ischemia and recovery.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 490
page 490
icon of scanned page 491
page 491
icon of scanned page 492
page 492
icon of scanned page 493
page 493
icon of scanned page 494
page 494
icon of scanned page 495
page 495
icon of scanned page 496
page 496
icon of scanned page 497
page 497
icon of scanned page 498
page 498
Version history
  • Version 1 (February 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts