Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115580

The susceptibility sequence to rheumatoid arthritis is a cross-reactive B cell epitope shared by the Escherichia coli heat shock protein dnaJ and the histocompatibility leukocyte antigen DRB10401 molecule.

S Albani, J E Tuckwell, L Esparza, D A Carson, and J Roudier

Department of Medicine, University of California, San Diego, La Jolla, California 92093-0945.

Find articles by Albani, S. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego, La Jolla, California 92093-0945.

Find articles by Tuckwell, J. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego, La Jolla, California 92093-0945.

Find articles by Esparza, L. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego, La Jolla, California 92093-0945.

Find articles by Carson, D. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego, La Jolla, California 92093-0945.

Find articles by Roudier, J. in: JCI | PubMed | Google Scholar

Published January 1, 1992 - More info

Published in Volume 89, Issue 1 on January 1, 1992
J Clin Invest. 1992;89(1):327–331. https://doi.org/10.1172/JCI115580.
© 1992 The American Society for Clinical Investigation
Published January 1, 1992 - Version history
View PDF
Abstract

Immunological responses to bacterial heat shock proteins have been implicated in the pathogenesis of arthritis in animals and humans. The predicted amino acid sequence of dnaJ, a heat shock protein from Escherichia coli, contains an 11-amino acid segment that is homologous to the third hypervariable region of the human histocompatibility antigen (HLA) DRB10401 (formerly known as HLA Dw4), the part of the molecule that carries susceptibility to rheumatoid arthritis. To test the biological significance of this finding, we expressed and purified recombinant dnaJ (rdnaJ), and determined its immunologic cross-reactivity with HLA DRB10401. A rabbit antipeptide antiserum raised against the sequence of the third hypervariable region of HLA DRB10401 specifically bound to 'dnaJ, thus confirming that a similar sequence is expressed on the bacterial protein. Of greater consequence, an antiserum to the 'dnaJ protein recognized not only a peptide from the third hypervariable region of HLA DRB10401, but also the intact HLA DRB10401 polypeptide. Furthermore, the antibody to 'dnaJ reacted with HLA DRB10401 homozygous B lymphoblasts, but not with HLA DRB11501, DRB10101, DRB10301, and DRB10701 (formerly known as HLA Dw2, DR 1, DR 3, and DR 7, in the same order) homozygous cells. These results demonstrate that exposure to a bacterial heat shock protein can elicit antibodies against the rheumatoid arthritis susceptibility sequence in the third hypervariable region of HLA DRB10401.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 327
page 327
icon of scanned page 328
page 328
icon of scanned page 329
page 329
icon of scanned page 330
page 330
icon of scanned page 331
page 331
Version history
  • Version 1 (January 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts