Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Mechanisms of impaired exercise capacity in short duration experimental hyperthyroidism.
W H Martin 3rd, … , P M Nemeth, J E Saffitz
W H Martin 3rd, … , P M Nemeth, J E Saffitz
Published December 1, 1991
Citation Information: J Clin Invest. 1991;88(6):2047-2053. https://doi.org/10.1172/JCI115533.
View: Text | PDF
Research Article

Mechanisms of impaired exercise capacity in short duration experimental hyperthyroidism.

  • Text
  • PDF
Abstract

To investigate the mechanism of reduced exercise tolerance in hyperthyroidism, we characterized cardiovascular function and determinants of skeletal muscle metabolism in 18 healthy subjects aged 26 +/- 1 yr (mean +/- SE) before and after 2 wk of daily ingestion of 100 micrograms of triiodothyronine (T3). Resting oxygen uptake, heart rate, and cardiac output increased and heart rate and cardiac output at the same submaximal exercise intensity were higher in the hyperthyroid state (P less than 0.05). However, maximal oxygen uptake decreased after T3 administration (3.08 +/- 0.17 vs. 2.94 +/- 0.19 l/min; P less than 0.001) despite increased heart rate and cardiac output at maximal exercise (P less than 0.05). Plasma lactic acid concentration at an equivalent submaximal exercise intensity was elevated 25% (P less than 0.01) and the arteriovenous oxygen difference at maximal effort was reduced (P less than 0.05) in the hyperthyroid state. These effects were associated with a 21-37% decline in activities of oxidative (P less than 0.001) and glycolytic (P less than 0.05) enzymes in skeletal muscle and a 15% decrease in type IIA muscle fiber cross-sectional area (P less than 0.05). Lean body mass was reduced (P less than 0.001) and the rates of whole body leucine oxidation and protein breakdown were enhanced (P less than 0.05). Thus, exercise tolerance is impaired in short duration hyperthyroidism because of decreased skeletal muscle mass and oxidative capacity related to accelerated protein catabolism but cardiac pump function is not reduced.

Authors

W H Martin 3rd, R J Spina, E Korte, K E Yarasheski, T J Angelopoulos, P M Nemeth, J E Saffitz

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts