Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115494

Reduction in plasma human immunodeficiency virus ribonucleic acid after dideoxynucleoside therapy as determined by the polymerase chain reaction.

M Holodniy, D A Katzenstein, D M Israelski, and T C Merigan

Center for AIDS Research, Stanford University Medical Center, California 94305.

Find articles by Holodniy, M. in: PubMed | Google Scholar

Center for AIDS Research, Stanford University Medical Center, California 94305.

Find articles by Katzenstein, D. in: PubMed | Google Scholar

Center for AIDS Research, Stanford University Medical Center, California 94305.

Find articles by Israelski, D. in: PubMed | Google Scholar

Center for AIDS Research, Stanford University Medical Center, California 94305.

Find articles by Merigan, T. in: PubMed | Google Scholar

Published November 1, 1991 - More info

Published in Volume 88, Issue 5 on November 1, 1991
J Clin Invest. 1991;88(5):1755–1759. https://doi.org/10.1172/JCI115494.
© 1991 The American Society for Clinical Investigation
Published November 1, 1991 - Version history
View PDF
Abstract

Cell-free HIV RNA in plasma was detected and quantitated after antiviral therapy by the polymerase chain reaction. RNA was extracted from plasma, reverse transcribed to cDNA, amplified by polymerase chain reaction, and quantitated by absorbance based on an enzyme-linked affinity assay. 72 HIV antibody-positive subjects had one plasma sample taken. 39 who were not receiving antiretroviral therapy at the time had a mean plasma HIV RNA copy number of 690 +/- 360 (mean +/- SEM) per 200 microliters of plasma, while 33 subjects who had been receiving zidovudine therapy for a minimum of 3 mo had a mean copy number of 134 +/- 219 (P less than 0.05). 27 additional HIV antibody-positive patients had two plasma samples taken before and 1 mo after initiating dideoxynucleoside therapy. Plasma HIV RNA copy number fell from 540 +/- 175 to 77 +/- 35 (P less than 0.05). Finally, nine of these subjects had two baseline samples obtained before initiating therapy and two posttreatment samples 1 and 2 mo after therapy was begun. Mean plasma RNA copy number declined from 794 +/- 274 to less than 40 (below the lower limit of sensitivity) after 1 mo of therapy, with suppression maintained after 2 mo of therapy. These results suggest that gene amplification can be used to detect and quantitate changes in plasma HIV RNA after dideoxynucleoside therapy. Plasma HIV polymerase chain reaction may be a more sensitive marker to monitor antiviral therapy, particularly in asymptomatic patients where measurement of p24 antigen or quantitative plasma cultures are negative.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1755
page 1755
icon of scanned page 1756
page 1756
icon of scanned page 1757
page 1757
icon of scanned page 1758
page 1758
icon of scanned page 1759
page 1759
Version history
  • Version 1 (November 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts