Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115470

The vascular smooth muscle alpha-actin gene is reactivated during cardiac hypertrophy provoked by load.

F M Black, S E Packer, T G Parker, L H Michael, R Roberts, R J Schwartz, and M D Schneider

Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Find articles by Black, F. in: JCI | PubMed | Google Scholar

Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Find articles by Packer, S. in: JCI | PubMed | Google Scholar

Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Find articles by Parker, T. in: JCI | PubMed | Google Scholar

Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Find articles by Michael, L. in: JCI | PubMed | Google Scholar

Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Find articles by Roberts, R. in: JCI | PubMed | Google Scholar

Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Find articles by Schwartz, R. in: JCI | PubMed | Google Scholar

Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Find articles by Schneider, M. in: JCI | PubMed | Google Scholar

Published November 1, 1991 - More info

Published in Volume 88, Issue 5 on November 1, 1991
J Clin Invest. 1991;88(5):1581–1588. https://doi.org/10.1172/JCI115470.
© 1991 The American Society for Clinical Investigation
Published November 1, 1991 - Version history
View PDF
Abstract

Cardiac hypertrophy triggered by mechanical load possesses features in common with growth factor signal transduction. A hemodynamic load provokes rapid expression of the growth factor-inducible nuclear oncogene, c-fos, and certain peptide growth factors specifically stimulate the "fetal" cardiac genes associated with hypertrophy, even in the absence of load. These include the gene encoding vascular smooth muscle alpha-actin, the earliest alpha-actin expressed during cardiac myogenesis; however, it is not known whether reactivation of the smooth muscle alpha-actin gene occurs in ventricular hypertrophy. We therefore investigated myocardial expression of the smooth muscle alpha-actin gene after hemodynamic overload. Smooth muscle alpha-actin mRNA was discernible 24 h after coarctation and was persistently expressed for up to 30 d. In hypertrophied hearts, the prevalence of smooth muscle alpha-actin gene induction was 0.909, versus 0.545 for skeletal muscle alpha-actin (P less than 0.05). Ventricular mass after 2 d or more of aortic constriction was more highly correlated with smooth muscle alpha-actin gene activation (r = 0.852; P = 0.0001) than with skeletal muscle alpha-actin (r = 0.532; P = 0.009); P less than 0.0005 for the difference in the correlation coefficients. Thus, smooth muscle alpha-actin is a molecular marker of the presence and extent of pressure-overload hypertrophy, whose correlation with cardiac growth at least equals that of skeletal alpha-actin. Induction of smooth muscle alpha-actin was delayed and sustained after aortic constriction, whereas the nuclear oncogenes c-jun and junB were expressed rapidly and transiently, providing potential dimerization partners for transcriptional control by c-fos.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1581
page 1581
icon of scanned page 1582
page 1582
icon of scanned page 1583
page 1583
icon of scanned page 1584
page 1584
icon of scanned page 1585
page 1585
icon of scanned page 1586
page 1586
icon of scanned page 1587
page 1587
icon of scanned page 1588
page 1588
Version history
  • Version 1 (November 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts