Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Evidence from oocyte expression that the erythrocyte water channel is distinct from band 3 and the glucose transporter.
R Zhang, … , B Thorens, A S Verkman
R Zhang, … , B Thorens, A S Verkman
Published November 1, 1991
Citation Information: J Clin Invest. 1991;88(5):1553-1558. https://doi.org/10.1172/JCI115466.
View: Text | PDF
Research Article

Evidence from oocyte expression that the erythrocyte water channel is distinct from band 3 and the glucose transporter.

  • Text
  • PDF
Abstract

It has been proposed that the mercurial-sensitive water transporter in mammalian erythrocytes is the anion exchanger band 3 (AE1) and/or the glucose transporter, band 4.5 (GLUT1). Using a functional assay for water channel expression in Xenopus oocytes (Zhang, R., K. A. Logee, and A. S. Verkman. 1990. J. Biol. Chem. 265:15375-15378), we compared osmotic water permeability (Pf) of oocytes injected with water, reticulocyte mRNA, AE1 mRNA, and GLUT1 mRNA. Injection of oocytes with 5-50 ng of in vitro-transcribed AE1 mRNA had no effect on Pf, but increased trans-stimulated 36Cl uptake greater than fourfold in a dinitro-disulfonic stilbene (DNDS)-inhibitable manner. Injection with 1-50 ng of in vitro-transcribed GLUT1 mRNA increased 3H-methylglucose uptake greater than 15-fold in a cytochalasin B-sensitive manner and increased Pf from (3.7 +/- 0.4) x 10(-4) cm/s (SE, n = 16, 10 degrees C) in water-injected oocytes up to (13 +/- 1) x 10(-4) cm/s (n = 18). Both the increments in sugar and water transport were inhibited by cytochalasin B (25 microM) and phloretin (0.2 mM); neither was inhibited by 0.3 mM HgCl2. In oocytes injected with 50 ng of rabbit reticulocyte mRNA, the Pf of (18 +/- 2) x 10(-4) cm/s (n = 18) was reduced to (4.0 +/- 0.6) x 10(-4) cm/s (n = 10) by HgCl2, but was not inhibited by DNDS (0.4 mM), cytochalasin B or phloretin. Coinjection of reticulocyte mRNA with antisense oligodeoxyribonucleotides against AE1 or GLUT1 did not affect Pf, but inhibited completely the incremental uptake of 36Cl or 3H-methylglucose, respectively. Expression of size-fractionated mRNA from reticulocyte gave a 2-2.5-kb size for water channel mRNA, less than the 4-4.5-kb size for the Cl transporter. These results provide evidence that facilitated water transport in erythrocytes is mediated not by bands 3 or 4.5, but by distinct water transport protein(s).

Authors

R Zhang, S L Alper, B Thorens, A S Verkman

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 230 8
PDF 43 20
Scanned page 285 5
Citation downloads 70 0
Totals 628 33
Total Views 661
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts