Escherichia coli hemolysin (Hly) is a proteinaceous pore-forming exotoxin that probably represents a significant virulence factor in E. coli infections. We investigated its influence on human polymorphonuclear neutrophils (PMN), previously identified as highly susceptible targets. Hly provoked rapid secretion of elastase and myeloperoxidase, generation of superoxide, and synthesis of platelet-activating factor (PAF) and lyso-PAF. Concomitantly, marked phosphatidylinositol (PtdIns) hydrolysis with sequential appearance of the inositol-phosphates, inositol-phosphates, inositol triphosphate, diphosphate, and monophosphate, respectively, and formation of diacylglycerol, occurred. The metabolic responses displayed distinct bell-shaped dose dependencies, with maximum events noted at low toxin concentrations of 0.1-0.5 hemolytic units per milliliter. PtdIns hydrolysis and metabolic responses elicited by Hly exceeded those evoked by optimal concentrations of formylmethionyl-leucyl phenylalanine, PAF, leukotriene B4, A23187, or staphylococcal alpha-toxin. The toxin-induced effects were sensitive toward modulators of PMN stimulus transmission pathways (pertussis toxin, the kinase C inhibitor H7, and phorbol myristate acetate "priming"). We conclude that the marked capacity of low doses of Hly to elicit degranulation, respiratory burst, and lipid mediator generation in human PMN probably envolves signal transduction via PtdIns hydrolysis.
F Grimminger, U Sibelius, S Bhakdi, N Suttorp, W Seeger
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 142 | 0 |
90 | 21 | |
Scanned page | 325 | 3 |
Citation downloads | 46 | 0 |
Totals | 603 | 24 |
Total Views | 627 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.