Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Penicillin-binding protein inactivation by human neutrophil myeloperoxidase.
R M Rakita, H Rosen
R M Rakita, H Rosen
Published September 1, 1991
Citation Information: J Clin Invest. 1991;88(3):750-754. https://doi.org/10.1172/JCI115372.
View: Text | PDF
Research Article

Penicillin-binding protein inactivation by human neutrophil myeloperoxidase.

  • Text
  • PDF
Abstract

Myeloperoxidase (MPO), H2O2, and chloride comprise a potent antimicrobial system believed to contribute to the antimicrobial functions of neutrophils and monocytes. The mechanisms of microbicidal action are complex and not fully defined. This report describes the MPO-mediated inactivation, in Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, of a class of cytoplasmic membrane enzymes (penicillin-binding proteins, PBPs) found in all eubacteria, that covalently bind beta-lactam antibiotics to their active sites with loss of enzymatic activity. Inactivation of "essential" PBPs, including PBP1-PBP3 of E. coli, leads to unbalanced bacterial growth and cell death. MPO treatment of bacteria was associated with loss of penicillin binding by PBPs, strongly suggesting PBP inactivation. In E. coli, PBP inactivation was most rapid with PBP3, where the rate of decline in binding activity approximated but did not equal loss of viability. Changes in E. coli morphology (elongation), observed just before bacteriolysis, were consistent with early predominant inactivation of PBP3. We conclude that inactivation of essential PBPs is sufficient to account for an important fraction of MPO-mediated bacterial action. This feature of MPO action interestingly recapitulates an antibacterial strategy evolved by beta-lactam-producing molds that must compete with bacteria for limited ecologic niches.

Authors

R M Rakita, H Rosen

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts