Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Type I human T cell leukemia virus tax protein transforms rat fibroblasts through the cyclic adenosine monophosphate response element binding protein/activating transcription factor pathway.
M R Smith, W C Greene
M R Smith, W C Greene
Published September 1, 1991
Citation Information: J Clin Invest. 1991;88(3):1038-1042. https://doi.org/10.1172/JCI115364.
View: Text | PDF
Research Article

Type I human T cell leukemia virus tax protein transforms rat fibroblasts through the cyclic adenosine monophosphate response element binding protein/activating transcription factor pathway.

  • Text
  • PDF
Abstract

The Tax oncoprotein of the type I human T cell leukemia virus (HTLV-I) activates transcription of cellular and viral genes through at least two different transcription factor pathways. Tax activates transcription of the c-fos proto-oncogene by a mechanism that appears to involve members of the cAMP response element binding protein (CREB) and activating transcription factor (ATF) family of DNA-binding proteins. Tax also induces the nuclear expression of the NF-kappa B family of rel oncogene-related enhancer-binding proteins. We have investigated the potential role of these CREB/ATF and NF-kappa B/Rel transcription factors in Tax-mediated transformation by analyzing the oncogenic potential of Tax mutants that functionally segregate these two pathways of transactivation. Rat fibroblasts (Rat2) stably expressing either the wild-type Tax protein or a Tax mutant selectively deficient in the ability to induce NF-kappa B/Rel demonstrated marked changes in morphology and growth characteristics including the ability to form tumors in athymic mice. In contrast, Rat2 cells stably expressing a Tax mutant selectively deficient in the ability to activate transcription through CREB/ATF demonstrated no detectable changes in morphology or growth characteristics. These results suggest that transcriptional activation through the CREB/ATF pathway may play an important role in Tax-mediated cellular transformation.

Authors

M R Smith, W C Greene

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 169 5
PDF 44 12
Figure 0 4
Scanned page 196 0
Citation downloads 63 0
Totals 472 21
Total Views 493
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts