Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Oxygen-dependent lipid peroxidation during lung ischemia.
A B Fisher, … , I Ayene, R G Eckenhoff
A B Fisher, … , I Ayene, R G Eckenhoff
Published August 1, 1991
Citation Information: J Clin Invest. 1991;88(2):674-679. https://doi.org/10.1172/JCI115352.
View: Text | PDF
Research Article

Oxygen-dependent lipid peroxidation during lung ischemia.

  • Text
  • PDF
Abstract

The effect of alveolar oxygen tension on lung lipid peroxidation during lung ischemia was evaluated by using isolated rat lungs perfused with synthetic medium. After a 5-min equilibration period, global ischemia was produced by discontinuing perfusion while ventilation continued with gas mixtures containing 5% CO2 and a fixed oxygen concentration between 0 and 95%. Lipid peroxidation was assessed by measurement of tissue thiobarbituric acid-reactive products and conjugated dienes. Control studies (no ischemia) showed no change in parameters of lipid peroxidation during 1 h of perfusion and ventilation with 20% or 95% O2. With 60 min of ischemia, there was increased lipid peroxidation which varied with oxygen content of the ventilating gas and was markedly inhibited by ventilation with N2. Perfusion with 5-, 8-, 11-, 14-eicosatetraynoic acid indicated that generation of eicosanoids during ischemia accounted for approximately 40-50% of lung lipid peroxide production. Changes of CO2 content of the ventilating gas (to alter tissue pH) or of perfusate glucose concentration had no effect on lipid peroxidation during ischemia, but perfusion at 8% of the normal flow rate prevented lipid peroxidation. Lung dry/wet weight measured after 3 min of reperfusion showed good correlation between lung fluid accumulation and lipid peroxidation. These results indicate that reperfusion is not necessary for lipid peroxidation with ischemic insult of the lung and provide evidence that elevated PO2 during ischemia accelerates the rate of tissue injury.

Authors

A B Fisher, C Dodia, Z T Tan, I Ayene, R G Eckenhoff

×

Usage data is cumulative from November 2024 through November 2025.

Usage JCI PMC
Text version 183 12
PDF 113 8
Scanned page 175 1
Citation downloads 57 0
Totals 528 21
Total Views 549
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts