Defensins induce ion channels in model lipid bilayers and permeabilize the membranes of Escherichia coli. We investigated whether similar membrane-active events occur during defensin-mediated cytolysis of tumor cells. Although defensin-treated K562 targets did not release chromium-labeled cytoplasmic components for 5-6 h, they experienced a rapid collapse (within minutes) of the membrane potential, efflux of rubidium, and influx of trypan blue. Defensin treatment also blunted the subsequent acidification response induced by nigericin, thereby further supporting the notion of enhanced transmembrane ion flow during exposure. These initial effects on the plasma membrane were not sufficient for subsequent lysis; a second phase of injury was required which involved the continued presence of defensin. The rapid membrane permeabilization phase was inhibited by azide/2-deoxyglucose, cytochalasin B, and increased concentrations of extracellular potassium and was unaffected by actinomycin-D, cycloheximide, and varying the calcium concentration. In contrast, the second phase was unaffected by cytochalasin B, inhibited by azide/2-deoxyglucose, enhanced by actinomycin D and cycloheximide, and varied with calcium concentration. These results indicate the initial adverse effect of defensins on mammalian cells occurs at the cell membrane. It is possible that the second phase of injury is mediated intracellularly by defensin that has been internalized through this leaky membrane.
A Lichtenstein
Usage data is cumulative from January 2025 through January 2026.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 547 | 18 |
| 64 | 11 | |
| Scanned page | 270 | 4 |
| Citation downloads | 72 | 0 |
| Totals | 953 | 33 |
| Total Views | 986 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.