Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Acetylcholine receptor-reactive T and B cells in myasthenia gravis and controls.
H Link, … , O Abramsky, T Olsson
H Link, … , O Abramsky, T Olsson
Published June 1, 1991
Citation Information: J Clin Invest. 1991;87(6):2191-2196. https://doi.org/10.1172/JCI115253.
View: Text | PDF
Research Article

Acetylcholine receptor-reactive T and B cells in myasthenia gravis and controls.

  • Text
  • PDF
Abstract

Myasthenia gravis (MG) is strongly associated with antibodies to acetylcholine receptor (AChR), whereas the extent of T cell involvement is not settled. The number of cells secreting interferon-gamma (IFN-gamma) in response to AChR during 48 h culture of blood mononuclear cells (PBL) may reflect AChR-reactive T cells. Using an immunospot assay, we detected such cells in 23 of 30 patients with MG at a mean number of 1 per 33.333 PBL. AChR-reactive T cells were also found in patients with other neurological diseases (OND) and in healthy subjects but at lower frequencies and numbers. The T cell response to purified protein derivative and to PHA, and also to two major myelin proteins (basic protein and proteolipid protein) did not differ between MG and the two control groups, underlining the specificity of an augmented T cell reactivity to AChR in MG. Evaluation of the B cell response by enumerating anti-AChR IgG antibody secreting cells revealed such cells in 27 of 28 patients with MG at a mean value of 1 per 14,085 PBL. Cells secreting anti-AChR antibodies of the IgA and IgM isotypes were also detected in MG, but less frequently, at lower numbers, and only in conjunction with IgG antibody secreting cells. Anti-AChR antibody secreting cells were also found among patient with OND and in healthy controls, but at lower frequencies and numbers. These data confirm that AChR is a major target for autoimmune response in MG.

Authors

H Link, O Olsson, J Sun, W Z Wang, G Andersson, H P Ekre, T Brenner, O Abramsky, T Olsson

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 260 14
PDF 65 14
Scanned page 263 3
Citation downloads 73 0
Totals 661 31
Total Views 692
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts